首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously isolated and reported a second species of the Saccharophagus genus, Saccharophagus sp. strain Myt-1. In the present study, a cellulase gene (celMytB) from the genomic DNA of Myt-1 was cloned and characterized. The DNA sequence fragment contained an open reading frame of 1,893 bp that encoded a protein of 631 amino acids with an estimated molecular mass of 66.8 kDa. The deduced protein, CelMytB, had a catalytic domain that contained a conserved signature sequence (VIYEIYNEPL) of glycosyl hydrolase family 5 and a CBM6 cellulose binding module. CelMytB showed optimal activity at 55 °C and pH 6.5, which is similar to the optimal temperature and pH profile of cel5H, an endoglucanase from the closely related S. degradans 2-40. However, the cellulase (degradation of soluble cellulose) and avicelase (degradation of crystalline cellulose) activities of CelMytB were about 3-fold and 100-fold higher, respectively, than the equivalent activities of cel5H. Moreover, CelMytB could degrade xylan. From the zymogram results, we speculated that the catalytic domain of CelMytB had high activity even without the cellulose binding module. The presence of some detergents stimulated the cellulase activity of CelMytB.  相似文献   

2.
CMP-sialic acid:lactosylceramide sialyltransferase is induced in HeLa cells by butyrate which also causes the cells to undergo morphological changes including the extension of neurite-like processes. The activity of this enzyme is more than 20-fold higher in butyrate-treated cells than in cells grown without this short chain fatty acid. In vitro synthesis of hematoside from endogenous acceptors is also elevated in cells grown in the presence of butyrate. The levels of induced enzyme activity are influenced by the pH of the culture medium, being higher in more acidic cultures, but are not affected markedly by varying the cell density over a wide range. Detergent is required for in vitro sialyltransferase activity, and this activity is stimulated almost fivefold by cardiolipid. The optimum pH for in vitro activity is 6.0 and the apparent Km value for lactosylceramide is 3.5 × 10?5m. Although there are several sialyltransferase activities in HeLa cells, the induced enzyme is specific for lactosylceramide.  相似文献   

3.
Adenosine kinase activity in in vitro human peripheral blood monocyte and human pulmonary alveolar macrophage cultures undergoes significant increases, 3- to 10-fold, in both total and specific activity during 14 days culture. Increased activity in monocyte cultures was not detected during the first 3 days of culture. Adenosine kinase activity in both mononuclear phagocyte cell cultures had a pH optimum at 6.0 and activity was dependent on the concentration of ATP and magnesium; 5 mM ATP and 2.5 mM MgCl were optimal. Increased concentrations of ATP or magnesium were inhibitory. Both dATP and GTP served as phosphate donors in the absence of ATP; in contrast, pyrimidine triphosphates were poor donors. Enzyme activity was inhibited by 1 μM p-chloromercuribenzoate and substrate inhibition by excess adenosine was observed in 2-week pulmonary alveolar macrophage cultures but not in freshly isolated cells. The role of increased adenosine kinase activity in in vitro monocyte-macrophage differentiation is considered.  相似文献   

4.
5.
The effects in kidney of streptozotocin-induced diabetes and of insulin supplementation to diabetic animals on glycogen-metabolizing enzymes were determined. Kidney glycogen levels were approximately 30-fold higher in diabetic animals than in control or insulintreated diabetic animals. The activities of glycogenolytic enzymes i.e., phosphorylase (both a and b), phosphorylase kinase, and protein kinase were not significantly altered in the diabetic animals. Glycogen synthase (I form) activity decreased in the diabetic animals whereas total glycogen synthase (I + D) activity significantly increased in these animals. The activities were restored to control values after insulin therapy. Diabetic animals also showed a 3-fold increase in glucose 6-phosphate levels. These data suggest that higher accumulation of glycogen in kidneys of diabetic animals is due to increased amounts of total glycogen synthase and its activator glucose 6-phosphate.  相似文献   

6.
The tylophorine analog rac-cryptopleurine exhibited potent anti-hepatitis C virus (HCV) activity through allosteric regulation of ATPase activity of heat shock cognate protein 70 (Hsc70). We evaluated the impact of modifications on the E-ring of rac-cryptopleurine to the inhibitory activity against HCV replication and regulation of ATPase activity of Hsc70. Cryptopleurine analog YXM-110 with a 13α-hydroxyl group maintained activity against HCV and promoted ATP/ADP turnover of Hsc70; however, compounds with hydroxyl groups at other positions or with other orientations (YXM-109, YXM-139, and YXM-140) did not exhibit similar activities. Size modification or heteroatom incorporation of the E-ring led to loss of anti-HCV activity. Promotion of the chaperone activity of Hsc70 with carboxyl terminus Hsc70 interacting protein (CHIP) further enhanced the anti-HCV activity of rac-cryptopleurine and XYM-110. This structure-activity relationship (SAR) study refined structural design and optimization for developing rac-crytopleurine analogs as potent anti-HCV agents targeted against the host factor involved in HCV replication.  相似文献   

7.
T. Galliard  S. Dennis 《Phytochemistry》1974,13(11):2463-2468
Five varieties of potato (Solanum tuberosum) were shown by gel- and free-flow-electrophoresis to exhibit multiple forms of lipolytic acyl hydrolase (LAH) and esterase enzymes. The electrophoretic patterns of LAH and esterase activities and protein differed with the variety and were characteristic for a given variety. In the variety (Golden Wonder) with the highest LAH activity (p-nitrophenylpalmitate as substrate), this was 200-fold greater than the esterase activity (p-nitrophenylacetate as substrate) and isoenzyme patterns for both enzymes were the most complex. In the variety with a very low LAH activity (Désirée), the LAH and esterase activities were similar and more simple isoenzyme patterns for these enzymes were observed.  相似文献   

8.
Developmental patterns of glyoxylate cycle and photosynthetic activities have been correlated with electrophoretic profiles of cotyledonary RNA and protein in both light- and dark-grown cucumber seedlings (Cucumis sativus L.) Cytoplasmic rRNA increases 10-fold between days 0 and 5, and the steepest increase coincides with the most rapid rise in activities of the glyoxysomal enzymes, isocitrate lyase and malate synthase. Chloroplast rRNA and ribulose bisphosphate (RuBP) carboxylase begin rising at day 3, followed about a day later by increases in glyoxylate reductase activity and chlorophyll content. Of these phototrophic indicators, only chlorophyll requires light for its initial appearance. Sodium dodecyl sulfate gel electrophoresis of total and soluble cotyledonary protein showed several developmental patterns, including: (a) progressive disappearance of storage protein present initially in particulate form; (b appearance and subsequent disappearance of a family of polypeptides identified by molecular weight, developmental profile, and density gradient centrifugation as subunits of glyoxysomal enzymes; and (c) appearance and progressive increase (in both light- and dark-grown cotyledons) of the large and small subunits of RuBP carboxylase, as well as other polypeptides presumably of chloroplast and peroxisomal origin.  相似文献   

9.
Isopycnic sucrose gradient separation of rat liver organelles revealed the presence of two distinct branched-chain α-keto acid decarboxylase activities; a mitochondrial activity, which decarboxylates the three branched-chain α-keto acids and requires CoA and NAD+ and a cytosolic activity, which decarboxylates α-ketoisocaproate, but not α-ketoisovalerate, or α-keto-β-methylvalerate. The latter enzyme does not require added CoA or NAD+. Assay conditions for the cytosolic α-ketoisocaproate decarboxylase activity were optimized and this activity was partially characterized. In rat liver cytosol preparations this activity has a pH optimum of 6.5 and is activated by 1.5 m ammonium sulfate. The decarboxylase activity has an apparent Km of 0.03 mm for α-ketoisocaproate when optimized assay conditions are employed. Phenylpyruvate is a very potent inhibitor. α-Ketoisovalerate, α-keto-β-methylvalerate, α-ketobutyrate, and α-ketononanoate also inhibit the α-ketoisocaproate decarboxylase activity. The data indicate that the soluble α-ketoisocaproate decarboxylase is an oxidase. Rat liver cytosol preparations consumed oxygen when either α-ketoisocaproate or α-keto-γ-methiolbutyrate were added. None of the other α-keto acids tested stimulated oxygen consumption. 1-14C-Labeled α-keto-γ-methiolbutyrate is also decarboxylated by cytosol preparations. The α-ketoisocaproate oxidase was purified 20-fold from a 70,000g supernatant fraction of a rat liver homogenate. In these preparations the activity was increased 4-fold by the addition of dithiothreitol, ferrous iron, and ascorbate. The major product of this enzyme activity is β-hydroxyisovalerate. Isovalerate is not a free intermediate in the reaction. The data indicate an alternative pathway for metabolism of α-ketoisocaproate which produces β-hydroxyisovalerate.  相似文献   

10.
Long-term warm-acdimated (30°C) carp were exposed to a sudden decrease in acclimation temperature. Kinetic properties and the time-course of activity of the δ9- and δ6-desaturases were measured in rough and smooth membranes of endoplasmic reticulum isolated from liver. During early cold exposure of fish, enhancements of desaturase activities are about 30-fold in rough and at least 18-fold in smooth membranes. Enhancements of activity are biphasic in rough endoplasmic reticulum but monophasic in the smooth membranes. They are assumed to be caused mainly by the synthesis of additional desaturase enzyme protein. The significantly higher activities in long-term cold-acclimated (10°C) carp are in accordance with the increased fatty acid unsaturation of their membrane lipids.  相似文献   

11.
Purified hepatic soluble guanylate cyclase (EC 4.6.1.2) had maximal specific activities in the unactivated state of 0.4 and 1 μmol cyclic GMP min?1 mg protein?1, when MgGTP and MnGTP, respectively, were used as substrates. The apparent Km for GTP was 85 or 10 μm in the presence of excess Mg2+ or Mn2+, respectively. Guanylate cyclase purified as described was deficient in heme but could be readily reconstituted with heme by reacting enzyme with hematin and excess dithiothreitol at 4 °C and pH 7.8. Unpurified guanylate cyclase was activated 20- to 84-fold by NO, nitroso compounds, NO-heme, and protoporphyrin IX. The purified enzyme was only slightly (2- to 3-fold) activated by NO and nitroso compounds but was markedly (50-fold) activated by NO-heme and protoporphyrin IX, achieving maximal specific activities of 10 μmol cyclic GMP min?1 mg protein?1. Enzyme activation by NO and nitroso compounds was restored by addition of hematin or by reconstitution of guanylate cyclase with heme. Excess hematin, however, inhibited enzyme activity. A partially purified heat-stable factor (activation-enhancing factor) was found to enhance (2- to 35-fold) enzyme activation without directly stimulating guanylate cyclase. In the presence of optimal concentrations of hematin, enzyme activation was still increased (2-fold) by the activation-enhancing factor but not by bovine serum albumin. Guanylate cyclase was markedly inhibited by SH reactive agents such as cystine, o-iodosobenzoic acid, periodate, and 5,5′-dithiobis (2-nitrobenzoic acid). In addition, CN? and FMN inhibited enzyme activation by NO-heme, but not by protoporphyrin IX, and did not affect basal enzymatic activity. Hepatic soluble guanylate cyclase appears to possess SH groups required for catalysis and to require heme and/or other unknown factors for the full expression of enzyme activation by NO and nitroso compounds.  相似文献   

12.
The steady state concentrations of arginine and related intermediary metabolites of the arginine biosynthetic pathway in the eukaryote Neurospora crassa were varied and the concurrent de-repression of the enzymes ornithine transcarbamylase, argininosuccinate synthetase and argininosuccinase was measured. Pool variation was achieved endogenously by the introduction and combination of mutant enzymes with reduced specific activities. Measurements of activities of the mutationally unaltered enzymes showed various degrees of de-repression. The highest activity level for each of the three enzymes was about five times that found in the fully repressed wild-type strain. The variations observed in the pools were as follows: ornithine, 7-fold; citrulline, 700-fold; argininosuccinic acid, 400-fold; arginine, 300-fold.By this means a quantitative analysis of the process of repression is made possible. A strong correlation was found between the degree of de-repression of the three enzymes and the concentration of arginine. The de-repression follows a sigmoid curve with respect to arginine concentration. This is consistent with the interpretation that the pathway enzymes are subject to a repression system with arginine, or a simple derivative of it, acting as a co-repressor.  相似文献   

13.
R.R. Walker  J.S. Hawker 《Phytochemistry》1976,15(12):1881-1884
During a 9 day period after anthesis the concentration of reducing sugars showed a 6-fold increase in fruits of Citrullus lanatus, and a 2-fold increase in those of Capsicum annuum. These increases were associated with acid invertase, the specific activity of which was high in ovaries at anthesis and which increased 5-fold in watermelon and 1.5-fold in pepper during the same period. Sucrose synthase apparently plays only a minor role in sucrose hydrolysis. Changes in sugar concentrations and both acid invertase and sucrose synthase activities were similar in fruits developed both after pollination or hormone (NAA) treatment of ovaries. In non-pollinated ovaries of watermelon there was also an increase in invertase activity up to 6 days after anthesis which paralleled the increase in activity in seeded and parthenocarpic fruits. However, there was no increase in either reducing sugars or sucrose, indicating that sucrose is not imported into non-pollinated ovaries. Utilisation of reserve starch may help prolong the life of non-pollinated ovaries for up to one week after anthesis.  相似文献   

14.
Guamerin, a canonical serine protease inhibitor from Hirudo nipponia, was identified as an elastase-specific inhibitor and has potential application in various diseases caused by elevated elastase concentration. However, the application of guamerin is limited because it also shows inhibitory activity against other proteases. To improve the selectivity of guamerin as an elastase inhibitor, it is essential to understand the binding mode of the inhibitor to elastase and to other proteases. For this purpose, we determined the crystal structure of guamerin in complex with chymotrypsin at 2.5 Å resolution. The binding mode of guamerin on elastase was explored from the model structure of guamerin/elastase. Guamerin binds to the hydrophobic pocket of the protease in a substrate-like manner using its binding loop. In order to improve the binding selectivity of guamerin to elastase, several residues in the binding loop were mutated and the inhibitory activities of the mutants against elastase and chymotrypsin were monitored. The substitution of the Met36 residue for Ala in the P1 site increased the inhibitory activity against elastase up to 14-fold, while the same mutant showed 7-fold decreased activity against chymotrypsin compared to the wild-type guamerin. Furthermore, the M36A guamerin mutant more effectively protected endothelial cells against cell damage caused by elastase than the wild-type guamerin.  相似文献   

15.
In Nepeta cataria leaf tissue there are two separate activities of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and mevalonate (MVA) kinase respectively as determined by the use of a 20–45% discontinuous sucrose density gradient. Cell-free extracts of leaf and callus tissue were prepared and HMG-CoA reductase and MVA kinase activities were compared to activities in extracts from porcine livers and yeast autolysates. Callus tissue from N. cataria has only one peak of HMG-CoA reductase and MVA kinase activity located at the top of the sucrose density gradient. Isolated chloroplast from N. cataria leaves have one peak of HMG-CoA reductase and MVA kinase activity, located near the bottom of a sucrose density gradient. MVA kinase activities in porcine livers and yeast autolysate also showed only one activity profile, located at the top of the sucrose gradient. Partial purification of the leaf extract through the use of differential centrifugation, 30–70% ammonium sulfate precipitation and Bio-Gel P-100 column chromatography shows that MVA kinase, 5-phosphomevalonate (MVAP) kinase and 5-pyrophosphomevalonate (MVAPP) decarboxylase activities remain in the same fractions. The extra-chloroplastidic HMG-CoA reductase activity may be separated from MVA kinase activity by differential centrifugation. These results suggest the presence of two HMG-CoA reductase and MVA kinase enzymes in N. cataria leaf tissue—one located in the chloroplast and a second being extra-chloroplastidic.  相似文献   

16.
The regulation of β-1,3 galactosyltransferase (3βGalT) and β-1,4 galactosyltransferase enzymatic (4βGalT) activities in the mammary gland of the tammar wallaby (Macropus eugenii) have been characterised. These two β-galactosyltransferases are active at different times during the lactation cycle and play a central role in regulating the carbohydrate composition in tammar milk, which changes progressively throughout lactation to assist the physiological development of the altrical young. The 4βGalT activity was present at parturition and increased 3-fold by day 10 of lactation (d10L), whereas 3βGalT activity was barely detectable at day d5L and then increased 6-fold by d10L. This increase in activity of both enzymes was sucking dependent. While 3βGalT activity was not observed in the mammary gland prior to d7L, this activity was found in mammary explants from late pregnant tammar cultured with insulin, hydrocortisone and prolactin (IFP) and was further stimulated by the addition of tri-iodothyronine (T) and 17β-oestradiol (E). The activity of 4βGalT in these explants was stimulated maximally with IFP. These data suggest the temporal activity of both 3βGalT and 4βGalT is most likely regulated by both endocrine stimuli and factors intrinsic to the mammary gland.  相似文献   

17.
The levels of some enzymatic activities involved in protoheme synthesis have been measured in subcellular fractions obtained at different stages of the growth of the yeast Saccharomyces cerevisiae grown anaerobically and aerobically with glucose (50 or 6 g/ liter), and ethanol (20 g/liter) as the carbon source. The degree of repression of the respiratory system is estimated by the respiratory capacity of whole cells, by the activities of succinate-cytochrome c reductase and cytochrome c oxidase of the mitochondrial particles, and by the cytochrome spectra. The results show that (i) the more porphyrins (cytochromes) that are synthesized by the cells, the lower is the specific activity of δ-aminolevulinic acid (ALA) synthetase and the higher is the specific activity of ALA dehydratase, the activity ratio ALA synthetase/ALA dehydratase decreasing at least 10-fold compared to the repressed cells; (ii) the amount of intracellular ALA found under all conditions tested (from 0.05 to 1.5 mm in the cell sap) correlates well with the measured ALA synthetase activity; its presence argues against a rate-limiting function for ALA synthetase and rather favors such a role for the ALA dehydratase in the formation of heme in yeast; (iii) the rate of porphyrin synthesis measured in vitro is higher in the case of cells with high cytochrome contents; and (iv) the specific activities of succinyl CoA synthetase and protoheme ferrolyase are always present in nonlimiting amounts. Some experiments are described showing that the values of the activities which are calculated from these in situ and in vivo experiments compare well with the values measured in vitro in the acellular extracts. The results concerning the enzymatic activities, together with (i) the excretion of coproporphyrin(ogen) and the accumulation of protoporphyrin + Zn-protoporphyrin in anaerobiosis, (ii) the presence of protoporpho(di)methene (P503) in anaerobic and repressed cells, and (iii) the presence of intracellular ALA under all growth conditions, are discussed in terms of possible control(s) of heme synthesis in yeast.  相似文献   

18.
A simple method is described that permitted rapid isolation of plasma membranes from mouse N-18 neuroblastoma cells. The purified plasma membranes gave a 10-fold increase in the specific activity of incorporated [3H]fucose over that of the cell homogenate. The specific activities of two other membrane markers, 5′-nucleotidase and alkaline phosphatase, increased 11-fold and 15-fold, respectively. Metabolic labeling with [3H]fucose identified a major fucosyl glycoprotein with apparent molecular weight of 92 000. Three surface labeling methods together with SDS-polyacrylamide gel electrophoresis and fluorography were used to characterize and compare the surface glycoproteins of undifferentiated and differentiated N-18 cells. The galactose oxidase/NaB3H4 method labeled two major galactoproteins (Mr = 52 000, 42 000) in both undifferentiated and differentiated cells. The neuraminidase/galactose oxidase/NaB3H4 method revealed many sialylgalactoproteins. Among them, the 220-kdalton, 150-kdalton and 130-kdalton bands were at least 100% more prominently labeled in the differentiated calls whereas the 76-kdalton and 72-kdalton bands were less prominently labeled in the differentiated cells when compared to their undifferentiated counterparts. The prominently iodinated protein bands in the undifferentiated cells had apparent molecular weights of 130 000, 92 000, 76 000 and 72 000 as compared to 150-, 130-, 92- and 76-kdalton bands in the differentiated cells. The labeling data obtained will enable us to further study the changes of these identified surface glycoproteins, both quantitatively and topologically, during the differentiation of neuroblastoma cells.  相似文献   

19.
TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamptm/tm) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamptm/tm sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamptm/tm males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility.  相似文献   

20.
A purified mitochondrial fraction was isolated from potato (Solanum tuberosum L.) tubers respiring normally at 23°C or at an accelerated rate in response to treatment with ethylene (10 microliters per liter).

A pronounced increase in various mitochondrial enzymic activities was observed in response to exposure of the whole tubers to ethylene. Cytochrome c oxidase activity increased more than 50%, DNA polymerase activity increased about 2-fold, and RNA polymerase activity increased 2.5-fold. Moreover, DNA or RNA polymerase activities of mitochondria isolated from tubers not treated with ethylene were not affected by ethylene treatment in vitro. Respiratory control ratios decreased from 2.84 to 1.50 with increasing periods of ethylene treatment from 0 to 15 hours. None of these changes were observed in untreated tubers. It is concluded that the stimulation of respiration by ethylene in potato tubers is accompanied in vivo by an enhancement of mitochondrial enzymic activity of both membrane-associated enzymes which participate in the mitochondrial oxidative electron transport as well as soluble enzymes which are not directly involved in respiration.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号