首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that truncation of the human beta-globin pre-mRNA in the second exon, 14 nucleotides downstream from the 3' splice site, leads to inhibition of splicing but not cleavage at the 5' splice site. We now show that several nonglobin sequences substituted at this site can restore splicing and that the efficiency of splicing depends on the length of the second (downstream) exon and not a specific sequence. Deletions in the first exon have no effect on the efficiency of in vitro splicing. Surprisingly, an intron fragment from the 5' region of the human or rabbit beta-globin intron 2, when placed 14 nucleotides downstream from the 3' splice site, inhibited all the steps in splicing beginning with cleavage at the 5' splice site. This result suggests that the intron 2 fragment carries a "poison" sequence that can inhibit the splicing of an upstream intron.  相似文献   

2.
Concerning the signals which direct excision of introns from mRNA precursors in higher eukaryotic genes, consensus 9-nucleotide sequence, (CA)AG/GT(AG)AGT, has been proposed with the 5'-splice site, but actual 5'-splice site sequences differ from it in a greater or lesser degree. We analyzed 5'-splice site sequence of human beta-globin gene by quantification method (categorical discriminant analysis) proposed previously. Analysis of 13-nucleotide sequences and deleted sequences showed that 9-nucleotide sequences in the consensus region are almost sufficient to define 5'-splice signal. To confirm this view, we examined a number of beta-globin mutant genes, where nucleotide changes occur at the authentic 5'-splice site of the first intron and cause beta-thalassemia phenotype. Our method could explain why such mutations abolish the 5'-splice site and cryptic 5'-splice sites are activated.  相似文献   

3.
To evaluate the importance of the surrounding nucleotide sequence in the selection of a splice site for mRNA, we have carried out computer studies of eukaryotic protein genes whose entire nucleotide sequences were available. A splice site-like sequence that has a significant homology to the consensus splice junction sequences is frequently found within an intron and exon. It is found that the higher the homology of a candidate donor site sequence to the nine-nucleotide consensus sequence, the higher is its probability of being a donor site. For most of the donors, the stability of presumed base-pairing with U1-RNA is higher than that of donor-like sequences, if any, in the adjacent exon and intron. However, homology of a candidate acceptor sequence to the 15-nucleotide consensus is a poor criterion of an acceptor site. The presence of a sequence that could serve as a branch-point 18 to 37 nucleotides before an acceptor does not seem to be critical in distinguishing it from an acceptor-like sequence. For genes of human, rat, mouse and chicken, respectively, nucleotide frequencies around splice junctions of many genes have been calculated. They seem to be different at some positions around a donor site from species to species. The acceptors for these vertebrates have longer pyrimidine-rich regions than the previous consensus sequence. The newly derived nucleotide frequencies were used as the standard to calculate the weighted homology score of a candidate splice site sequence in a gene of the four species. This weighted homology score of the 40 to 60-nucleotide intron-exon sequence is a much better criterion of an acceptor. These results suggest that the most important signal in the selection of a splice resides in the surrounding nucleotide sequence. It is also suggested that the surrounding nucleotide sequence alone is not generally sufficient for the selection.  相似文献   

4.
5.
6.
7.
Regulation of calcitonin (CT)/calcitonin gene-related peptide (CGRP) RNA processing involves the use of alternative 3' terminal exons. In most tissues and cell lines, the CT terminal exon is recognized. In an attempt to define regulatory sequences involved in the utilization of the CT-specific terminal exon, we performed deletion and mutation analyses of a mini-gene construct that contains the CT terminal exon and mimics the CT processing choice in vivo. These studies identified a 127-nucleotide intron enhancer located approximately 150 nucleotides downstream of the CT exon poly(A) cleavage site that is required for recognition of the exon. The enhancer contains an essential and conserved 5' splice site sequence. Mutation of the splice site resulted in diminished utilization of the CT-specific terminal exon and increased skipping of the CT exon in both the mini-gene and in the natural CT/CGRP gene. Other components of the intron enhancer modified utilization of the CT-specific terminal exon and were necessary to prevent utilization of the 5' splice site within the intron enhancer as an actual splice site directing cryptic splicing. Conservation of the intron enhancer in three mammalian species suggests an important role for this intron element in the regulation of CT/CGRP processing and an expanded role for intronic 5' splice site sequences in the regulation of RNA processing.  相似文献   

8.
为了解人类LDL受体基因内含子15的遗传背景,利用长链PCR和锚定PCR分离了LDL受体基因外显子15-内含子15-外显子16和内含子15的3‘末端片段。利用Dynalbeads固相单链分离PCR产物直接测序法测定了内含子15 3’末端1222个碱基序列。序列显示:3‘末端含有由16个碱基组成的典型3’末端剪接位点;3‘端上游第31个碱基处含有经典分支位点,除了经典分支位点外,在3’末端上游第20  相似文献   

9.
10.
Application of learning techniques to splicing site recognition   总被引:2,自引:0,他引:2  
J Quinqueton  J Moreau 《Biochimie》1985,67(5):541-547
Most genes of eukaryotic genomes are disrupted by introns. The application of a learning technique which uses both statistic and syntactic analysis lead to the establishment of logical rules enabling the recognition of intron/exon junctions between uncoding and coding sequences. The rules were tested on rat actin gene sequences containing some or all of the introns and 50 exon nucleotides on either side of the intron. The results show good recognition of the excision site. This recognition is more ambiguous when the sequence is short; for the acceptor sequence it presents a good selection. The learning achieved with both the donor and acceptor sequence does not lead to recognition. This result indicates that it is not the relationship between donor and acceptor sites in the same intron which determines sequence selection or the splicing mechanism.  相似文献   

11.
12.
Certain thalassemic human beta-globin pre-mRNAs carry mutations that generate aberrant splice sites and/or activate cryptic splice sites, providing a convenient and clinically relevant system to study splice site selection. Antisense 2'-O-methyl oligoribonucleotides were used to block a number of sequences in these pre-mRNAs and were tested for their ability to inhibit splicing in vitro or to affect the ratio between aberrantly and correctly spliced products. By this approach, it was found that (i) up to 19 nucleotides upstream from the branch point adenosine are involved in proper recognition and functioning of the branch point sequence; (ii) whereas at least 25 nucleotides of exon sequences at both 3' and 5' ends are required for splicing, this requirement does not extend past the 5' splice site sequence of the intron; and (iii) improving the 5' splice site of the internal exon to match the consensus sequence strongly decreases the accessibility of the upstream 3' splice site to antisense 2'-O-methyl oligoribonucleotides. This result most likely reflects changes in the strength of interactions near the 3' splice site in response to improvement of the 5' splice site and further supports the existence of communication between these sites across the exon.  相似文献   

13.
14.
Large dsDNA-containing chlorella viruses encode a pyrimidine dimer-specific glycosylase (PDG) that initiates repair of UV-induced pyrimidine dimers. The PDG enzyme is a homologue of the bacteriophage T4-encoded endonuclease V. The pdg gene was cloned and sequenced from 42 chlorella viruses isolated over a 12-year period from diverse geographic regions. Surprisingly, the pdg gene from 15 of these 42 viruses contain a 98-nucleotide intron that is 100% conserved among the viruses and another 4 viruses contain an 81-nucleotide intron, in the same position, that is nearly 100% identical (one virus differed by one base). In contrast, the nucleotides in the pdg coding regions (exons) from the intron-containing viruses are 84 to 100% identical. The introns in the pdg gene have 5′-AG/GTATGT and 3′-TTGCAG/AA splice site sequences which are characteristic of nuclear-located, spliceosomal processed pre-mRNA introns. The 100% identity of the 98-nucleotide intron sequence in the 15 viruses and the near-perfect identity of an 81-nucleotide intron sequence in another 4 viruses imply strong selective pressure to maintain the DNA sequence of the intron when it is in the pdg gene. However, the ability of intron-plus and intron-minus viruses to repair UV-damaged DNA in the dark was nearly identical. These findings contradict the widely accepted dogma that intron sequences are more variable than exon sequences. Received: 13 May 1999 / Accepted: 20 August 1999  相似文献   

15.
16.
B Ruskin  J M Greene  M R Green 《Cell》1985,41(3):833-844
The excised introns of pre-mRNAs and intron-containing splicing intermediates are in a lariat configuration in which the 5' end of the intron is linked by a 2'-5' phosphodiester bond (RNA branch) to a single adenosine residue near the 3' end of the intron. To determine the role of the specific sequence surrounding the RNA branch, we have mutated the branch point sequence of the human beta-globin IVS1. Pre-mRNAs lacking the authentic branch point sequence are accurately spliced in vitro; processing of the mutant pre-mRNAs generates RNA lariats due to the activation of cryptic branch points within IVS1. The cryptic branch points always occur at adenosine residues, but the sequences surrounding the branched nucleotide vary. Regardless of the type of mutation or the sequences remaining within IVS1, the cryptic branch points are 22 to 37 nucleotides upstream of the 3' splice site. These results suggest that RNA branch point selection is primarily based on a mechanism that measures the distance from the 3' splice site.  相似文献   

17.
We have investigated the regulation of splicing of one of the alternatively spliced exons in the rat fibronectin gene, the EIIIB exon. This 273-nucleotide exon is excluded by some cells and included to various degrees by others. We find that EIIIB is intrinsically poorly spliced and that both its exon sequences and its splice sites contribute to its poor recognition. Therefore, cells which recognize the EIIIB exon must have mechanisms for improving its splicing. Furthermore, in order for EIIB to be regulated, a balance must exist between the EIIIB splice sites and those of its flanking exons. Although the intron upstream of EIIIB does not appear to play a role in the recognition of EIIIB for splicing, the intron downstream contains sequence elements which can promote EIIIB recognition in a cell-type-specific fashion. These elements are located an unusually long distance from the exon that they regulate, more than 518 nucleotides downstream from EIIIB, and may represent a novel mode of exon regulation.  相似文献   

18.
19.
It has been previously suggested that self-splicing of group II introns starts with a nucleophilic attack of the 2' OH group from the branchpoint adenosine on the 5' splice junction. To investigate the sequences governing the specificity of this attack, a series of Bal31 nuclease deletion mutants was constructed in which progressively larger amounts of 5' exon have been removed starting from its 5' end. The ability of mutant RNAs to carry out self-splicing in vitro was studied. Involvement of 5' exon sequences in self-splicing activity is indicated by the fact that a mutant in which as many as 18 nucleotides of 5' exon remain is seriously disturbed in splicing, while larger deletions eliminate splicing entirely. Mutants containing a truncated 5' exon form aberrant RNAs. One of these is a 425-nucleotide RNA containing the 5' exon as well as sequences of the 5' part of the intron. Its 3' end maps at position 374 of the 887-nucleotide intron. The other is a less abundant lariat RNA probably originating from the remainder of the intron linked to the 3' exon. We interpret this large dependence of reactivity of the intron on 5' exon and adjoining intron sequences as evidence for base-pairing interactions between the exon and parts of the intron, leading to an RNA folding necessary for splicing. Possible folding models are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号