首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract

Expression profiles of ten genes commonly up-regulated during plant defense against microbial pathogens were compared temporally during compatible and incompatible interactions with first-instar Hessian fly larvae, in two wheat lines carrying different resistance genes. Quantitative real-time PCR revealed that while a lipoxygenase gene (WCI-2) was strongly up-regulated during the incompatible interactions, genes encoding β-1,3 endoglucanase (GNS) and an integral membrane protein (WIR1) were moderately responsive. Genes for thionin-like protein (WCI-3), PR-17-like protein (WCI-5), MAP kinase (WCK-1), phenylalanine ammonia-lyase (PAL), pathogenesis-related protein-1 (PR-1), receptor-like kinase (LRK10) and heat shock protein 70 (HSP70) were minimally responsive. The application of signaling molecules, salicylic acid (SA), methyl jasmonate (MJ) and abscisic acid (ABA), to insect-free plants demonstrated association of these genes with specific defense-response pathways. SA-induced up-regulation of a gene related to lipoxygenases that are involved in jasmonic acid (JA)-biosynthesis is suggestive of positive cross-talk between SA- and JA-mediated signaling pathways. Data suggest that alternative mechanisms may be involved since few of these classical defense-response genes are significantly up-regulated during incompatible interactions between wheat and Hessian fly.  相似文献   

3.
A reverse-genetics approach was applied to identify genes involved in Tomato yellow leaf curl virus (TYLCV) resistance, taking advantage of two tomato inbred lines from the same breeding program—one susceptible (S), one resistant (R—that used Solanum habrochaites as the source of resistance. cDNA libraries from inoculated and non-inoculated R and S plants were compared, postulating that genes preferentially expressed in the R line may be part of the network sustaining resistance to TYLCV. Further, we assumed that silencing genes located at important nodes of the network would lead to collapse of resistance. Approximately 70 different cDNAs representing genes preferentially expressed in R plants were isolated and their genes identified by comparison with public databases. A Permease I-like protein gene encoding a transmembranal transporter was further studied: it was preferentially expressed in R plants and its expression was enhanced several-fold following TYLCV inoculation. Silencing of the Permease gene of R plants using Tobacco rattle virus-induced gene silencing led to loss of resistance, expressed as development of disease symptoms typical of infected susceptible plants and accumulation of large amounts of virus. Silencing of another membrane protein gene preferentially expressed in R plants, Pectin methylesterase, previously shown to be involved in Tobacco mosaic virus translocation, did not lead to collapse of resistance of R plants. Thus, silencing of a single gene can lead to collapse of resistance, but not every gene preferentially expressed in the R line has the same effect, upon silencing, on resistance.  相似文献   

4.
5.
A glutathione S-transferase gene was amplified from cDNA of Nicotiana tabacum roots infected with Phytophthora parasitica var. nicotianae. The gene was cloned in sense and anti-sense orientation to an RNAi vector for induced gene silencing, and reduced expression of the gene was detected by RT-PCR. A statistically significant increase in resistance of N. tabacum to infection following gene silencing was found for glutathione S-transferase-silenced plants compared with control plants. Some defense genes were up-regulated in glutathione S-transferase-silenced plants during the interaction with the pathogen. This is the first evidence of the role of glutathione S-transferase as negative regulator of defense response.  相似文献   

6.
7.
8.
The type III effector protein AvrPto acts as a virulence factor in susceptible plants lacking a cognate resistance gene but triggers hypersensitive response and disease resistance in tomato plants carrying the Pto gene or in tobacco plants carrying an unknown resistance gene. To assist the characterization of cellular responses caused by AvrPto in the plant, a pathogen-free system was adopted to isolate genes up-regulated 12 h after induced expression of AvrPto. By using subtraction cloning and transgenic tobacco plants expressing avrPto as a transgene, we isolated 125 nonredundant cDNA clones that represent avrPto-response genes (ARG). In addition to genes that are known to be induced by Pto-avrPto recognition, a number of new genes were also isolated. Most of ARG showed a specific induction in tobacco plants challenged with incompatible or nonhost pathogens. The use of an avrPto mutant that selectively eliminated the avrPto recognition in tobacco demonstrated that the ARG were induced in a highly specific manner by the avirulence, instead of the virulence activity of avrPto.  相似文献   

9.
If Meloidogyne incognita preceded Rhizoctonia solani by 10 days or 21 days in roots of greenhouse-grown tobacco plants, root rot was more extensive than when the nematode and fungus were introduced either simultaneously or separately or when R. solani was added after artificial wounding. Histological examination of galled roots 72 days after inoculation with R. solani revealed extensive fungal colonization in the root-knot susceptible cultivar ''Dixie Bright 101'' when M. incognita preceded R. solani by 21 days. R. solani, normally nonpathogenic on mature tobacco roots, may cause severe losses when present with well-established root-knot nematode infections.  相似文献   

10.
11.
12.
Viral resistance can be effectively induced in transgenic plants through their silencing machinery. Thus, we designed nine short hairpin RNAs (shRNA) constructs to target nuclear inclusion protein b (NIb), helper component proteinase (HC-Pro), cylindrical inclusion protein (CI) and viral protein genome linked (VPg) genes of Potato virus Y (PVYN) and Tobacco etch virus (TEV-SD1). The shRNAs were completely complementary to the genes of PVYN, and contained 1–3 nt mismatches to the genes of TEV-SD1. To study the specificity of gene silencing in shRNA-mediated viral resistance, the constructs were introduced into tobacco plants. The results of viral resistance assay revealed that these nine kinds of transgenic tobacco plants can effectively induce viral resistance against both PVYN and TEV-SD1, and the shRNA construct targeting the NIb gene showed higher silencing efficiency. Northern blot and short interfering RNA (siRNA) analyses demonstrated that the viral resistance can be attributed to the degradation of the target RNA through the RNA silencing system. Correlation analysis of siRNA sequence characteristics with its activity suggested that the secondary structure stability of the antisense strand did not influence siRNA activity; 1 to 3 nt 5’ end of the sense strand caused a significant effect on siRNA activity where the first base such as U was favourable for silencing; the base mismatch between the siRNA and the target gene may be more tolerated in the 5’ end.  相似文献   

13.
14.
Activation of two mitogen-activated protein kinases (MAPKs), wound-induced protein kinase (WIPK) and salicylic acid-induced protein kinase (SIPK), is one of the earliest responses that occur in tobacco plants that have been wounded, treated with pathogen-derived elicitors or challenged with avirulent pathogens. We isolated cDNAs for these MAPKs ( NbWIPK and NbSIPK) from Nicotiana benthamiana. The function of NbWIPK and NbSIPK in mediating the hypersensitive response (HR) triggered by infiltration with INF1 protein (the major elicitin secreted by Phytophthora infestans), and the defense response to an incompatible bacterial pathogen ( Pseudomonas cichorii), was investigated by employing virus-induced gene silencing (VIGS) to inhibit expression of the WIPK and SIPK genes in N. benthamiana. Silencing of WIPK or SIPK, or both genes simultaneously, resulted in reduced resistance to P. cichorii, but no change was observed in the timing or extent of HR development after treatment with INF1.Communicated by R. G. Herrmann  相似文献   

15.

Key message

Transgenic tall fescue plants expressing RNAi constructs of essential genes of Rhizoctonia solani were resistant to R. solani.

Abstract

Tall fescue (Festuca arundinacea Schreb.) is an important turf and forage grass species widely used for home lawns and on golf courses in North Carolina and other transition zone states in the US. The most serious and frequently occurring disease of tall fescue is brown patch, caused by a basidiomycete fungus, Rhizoctonia solani. This research demonstrates resistance to brown patch disease achieved by the application of host induced gene silencing. We transformed tall fescue with RNAi constructs of four experimentally determined “essential” genes from R. solani (including genes encoding RNA polymerase, importin beta-1 subunit, Cohesin complex subunit Psm1, and a ubiquitin E3 ligase) to suppress expression of those genes inside the fungus and thus inhibit fungal infection. Four gene constructs were tested, and 19 transgenic plants were obtained, among which 12 plants had detectable accumulation of siRNAs of the target genes. In inoculation tests, six plants displayed significantly improved resistance against R. solani. Lesion size was reduced by as much as 90 %. Plants without RNAi accumulation did not show resistance. To our knowledge, this is the first case that RNAi constructs of pathogen genes introduced into a host plant can confer resistance against a necrotrophic fungus.
  相似文献   

16.
17.
18.
The strategies used by necrotrophic fungal pathogens to infect plants are often perceived as lacking the sophistication of their haustorium producing, host defence suppressing, biotrophic counterparts. There is also a relative paucity of knowledge regarding how effective gene-for-gene based resistance reactions might function against necrotrophic plant pathogens. However, recent data has emerged from a number of systems which has highlighted that particular species of necrotrophic (and/or hemibiotrophic) fungi, have evolved very sophisticated strategies for plant infection which appear, in fact, to hijack the host resistance responses that are commonly deployed against biotrophs. Both disease resistance (R) protein homologues and mitogen-activated protein kinase (MAPK) cascades commonly associated with incompatible disease resistance responses; appear to be targeted by necrotrophic fungi during compatible disease interactions. These findings highlight an emerging sophistication in the strategies deployed by necrotrophic fungi to infect plants.Key words: Mycosphaerella graminicola, Septoria tritici, Triticum aestivum, mitogen-activated protein kinase, programmed cell death, fungal pathogen, disease resistance, disease susceptibility, toxin  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号