首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These studies were designed to identify the proteins associated with specific mRNAs. L6 myoblasts contain a unique poly(A)-rich H4 mRNA as well as poly(A)-minus H4 mRNA subspecies. We have characterized the proteins present in both poly(A)-rich and poly(A)-minus histone H4 mRNP complexes following ultraviolet cross-linking in vivo. In addition, the muscle-specific myosin heavy chain (MHC) mRNP complex was characterized in myoblasts. [35S]Methionine-labelled poly(A)-rich and poly(A)-minus RNP complexes were prepared from both the polysomal and free (post-polysomal) RNP compartments. From each fraction the mRNP encoding histone H4 or MHC was purified by hybrid selection to a cloned human histone H4 gene or MHC cDNA. A unique set of 6-16 proteins was found bound to each of the specific mRNP complexes. These proteins were a subset of the total population of either polysomal or free RNP proteins and some proteins appeared common among the different hybrid-selected RNP fractions. The results demonstrate that (a) mRNAs bind a different set of proteins depending upon whether they are present in the polysomal or free mRNP fraction; (b) the presence of poly(A) sequences affects the proteins which bind to H4 mRNA in the free RNP compartment.  相似文献   

2.
3.
Cytoplasmic messenger RNAs of eukaryotic cells are distributed between polysomal and post-polysomal fractions (free) as protein-bound complexes. These studies were designed to determine whether a specific mRNA isolated from different subcellular compartments is complexed with the same family of polypeptides. As a first approach we have examined the proteins associated with mRNA which codes for histone H4. To perform these experiments HeLa cells were exposed to ultraviolet light to cross-link in vivo polypeptides which are closely associated with nucleic acid. To identify the polypeptides associated with mRNA specific for histones a genomic probe for histone H4 mRNA was immobilized on epoxy-cellulose. By hybrid selection specific mRNPs containing histone mRNA were isolated. Our results reveal the existence of a number of polypeptides associated with both polysomal and post-polysomal histone mRNAs. In polysomal histone mRNA two polypeptides of Mr = 49 000 and 52 500 were the major components. In contrast polypeptides of Mr = 43 000 and 57 000 were the major polypeptide components of post-polysomal (or free) histone mRNA. Furthermore, these results also suggest that the polypeptides associated with either polysomal or free H4 histone mRNA represent a subset of proteins found in poly(A)-free fractions or poly(A)-rich mRNA fractions.  相似文献   

4.
Cytoplasmic polysomal and non-polysomal mRNA-associated proteincomplexes were isolated from, and characterized in, developingsomatic and zygotic embryos of alfalfa (Medicago sativa L.).35S-methionine-labelled intact embryos were irradiated withultraviolet light (UV) in situ to cross-link mRNA and proteinsoccurring within one bond length, and the polysomal and non-polysomalfractions were extracted. Then the mRNA-protein complexes wereisolated from the fractions and separated using two cycles ofaffinity chromatography on an oligo(dT)-cellulose column. Followingdigestion with RNase A and T1 and micrococcal nuclease, mRNA-associatedproteins were separated by SDS-PAGE. Several polypeptides of 15–150 kDa were associated withthe polysomal and non-polysomal (ribonucleoprotein, mRNP) fractionsof alfalfa embryos after UV-cross-linking. Many of the polypeptidesassociated with the polysomal and non-polysomal mRNAs were qualitativelysimilar, although their concentration in the two fractions wasdifferent. However, some developmentally stage-specific polypeptideswere found to be associated with the non-polysomal mRNA fractionduring the early stages of embryogenesis (precotyledonary) ofsomatic embryos. Thus the presence of mRNPs during embryogenesishas been demonstrated, and proteins intimately associated withthe mRNAs identified. Key words: Embryogenesis, translational control, protein synthesis, messenger ribonucleoproteins, alfalfa (Medicago sativa L.)  相似文献   

5.
Irradiation of chicken muscle cells with ultraviolet light (254 nm) to cross-link RNA and protein moieties was used to examine the polypeptide complements of cytoplasmic mRNA-protein complexes (mRNP). The polypeptides of translationally active mRNP complexes released from polysomes were compared to the repressed nonpolysomal cytoplasmic (free) mRNP complexes. In general, all of the polypeptides present in free mRNPs were also found in the polysomal mRNPs. In contrast to polysomal mRNPS, polypeptides of Mr 28 000, 32 000, 46 000, 65 000 and 150 000 were either absent or present in relatively smaller quantities in free mRNP complexes. On the other hand, the relative proportion of polypeptides of Mr 130 000 and 43 000 was higher in free mRNPs than in polysomal mRNP complexes. To examine the role of cytoplasmic mRNP complexes in protein synthesis or mRNA metabolism, the changes in these complexes were studied following (a) inhibition of mRNA synthesis and (b) heat-shock treatment to alter the pattern of protein synthesis. Actinomycin D was used to inhibit mRNA synthesis in chick myotubes. The possibility of newly synthesized polypeptides of cytoplasmic mRNP complexes being assembled into these complexes in the absence of mRNA synthesis was examined. These studies showed that the polypeptides of both free and polysomal mRNP complexes can bind to pre-existing mRNAs, therefore suggesting that polypeptides of mRNP complexes can be exchanged with a pool of RNA-binding proteins. In free mRNP complexes, this exchange of polypeptides is significantly slower than in the polysomal mRNP complexes. Heat-shock treatment of chicken myotubes induces the synthesis of three polypeptides of Mr = 81 000, 65 000 and 25 000 (heat-shock polypeptides). Whether this altered pattern of protein synthesis following heat-shock treatment could affect the polypeptide composition of translationally active polysomal mRNPs was examined. The results of these studies show that, compared to normal cells, more newly synthesized polypeptides were assembled into polysomal mRNPs following heat-shock treatment. A [35S]methionine-labeled polypeptide of Mr = 80 000 was detected in mRNPs of heat-shocked cells, but not of normal cells. This polypeptide was, however, detected by AgNO3 staining of the unlabeled polypeptide of mRNP complexes of normal cells. These results, therefore, suggest that the assembly of newly synthesized 80 000-Mr polypeptide to polysomal mRNPs was enhanced following induction of new heat-shock mRNAs. The results of these studies reported here have been discussed in relation to the concept that free mRNP complexes are inefficiently translated in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The function of proteins that interact with mRNA   总被引:4,自引:0,他引:4  
Specific proteins are associated with mRNA in the cytoplasm of eukaryotic cells. The complement of associated proteins depends upon whether the mRNA is an integral component of the polysomal complex being translated, or, alternatively, whether it is part of the non-translated free mRNP fraction. By subjecting cells to ultraviolet irradiation in vivo to cross-link proteins to mRNA, mRNP proteins have been shown to be associated with specific regions of the mRNA molecule. Examination of mRNP complexes containing a unique mRNA has suggested that not all mRNA contain the same family of associated RNA binding proteins. The function of mRNA associated proteins may include a role in providing stability for mRNA, and/or in modulating translation. With the recent demonstrations that both free and polysomal mRNPs are associated with the cytoskeletal framework, specific mRNP proteins may play a role in determining the subcellular localization of specific mRNPs.  相似文献   

7.
The cytoplasmic fates of mRNAs are influenced by interactions between RNA-binding proteins and cis regulatory motifs. In the cytoplasm, mRNAs are present as messenger ribonucleoprotein particles, which include not only proteins that bind directly to the mRNA, but also additional proteins that are recruited via protein-protein interactions. Many labs have sought to purify such particles from cells, with limited success. We here describe a simple two-step procedure to purify actively translated mRNAs, with their associated proteins, from polysomes. We use a reporter mRNA that encodes a protein with three streptavidin binding peptides at the N-terminus. The polysomal reporter mRNA, with associated proteins, is purified via binding to a streptavidin matrix. The method takes four days, and can be applied in any cell that can be genetically manipulated. Using Trypanosoma brucei as a model system, we routinely purified 8% of the input reporter mRNA, with roughly 22-fold enrichment relative to un-tagged mRNAs, a final reporter-mRNA:total-mRNA ratio of about 1:10, and a protein purification factor of slightly over 1000-fold. Although the overall reporter mRNP composition is masked by the presence of proteins that are associated with many polysomal mRNAs, our method can be used to detect association of an RNA-binding protein that binds to specifically to a reporter mRNA.  相似文献   

8.
We previously identified Xenopus Pat1a (P100) as a member of the maternal CPEB RNP complex, whose components resemble those of P-(rocessing) bodies, and which is implicated in translational control in Xenopus oocytes. Database searches have identified Pat1a proteins in other vertebrates, as well as paralogous Pat1b proteins. Here we characterize Pat1 proteins, which have no readily discernable sequence features, in Xenopus oocytes, eggs, and early embryos and in human tissue culture cells. xPat1a and 1b have essentially mutually exclusive expression patterns in oogenesis and embryogenesis. xPat1a is degraded during meiotic maturation, via PEST-like regions, while xPat1b mRNA is translationally activated at GVBD by cytoplasmic polyadenylation. Pat1 proteins bind RNA in vitro, via a central domain, with a preference for G-rich sequences, including the NRAS 5′ UTR G-quadruplex-forming sequence. When tethered to reporter mRNA, both Pat proteins repress translation in oocytes. Indeed, both epitope-tagged proteins interact with the same components of the CPEB RNP complex, including CPEB, Xp54, eIF4E1b, Rap55B, and ePAB. However, examining endogenous protein interactions, we find that in oocytes only xPat1a is a bona fide component of the CPEB RNP, and that xPat1b resides in a separate large complex. In tissue culture cells, hPat1b localizes to P-bodies, while mPat1a-GFP is either found weakly in P-bodies or disperses P-bodies in a dominant-negative fashion. Altogether we conclude that Pat1a and Pat1b proteins have distinct functions, mediated in separate complexes. Pat1a is a translational repressor in oocytes in a CPEB-containing complex, and Pat1b is a component of P-bodies in somatic cells.  相似文献   

9.
10.
Cell-free translational and northern blot analyses were used to examine the distribution of storage protein messages in the cytoplasmic polysomal and mRNA-protein complex (mRNP) fractions during development of somatic and zygotic embryos of alfalfa (Medicago sativa cv Rangelander RL-34). No special array of messages was identified in the mRNP fraction; however, some messages were selectively enriched in either the polysome or mRNP fractions, and their distribution pattern varied quantitatively during development of the embryos. During the earliest stages of somatic embryo development, storage protein messages already were present, but there was no detectable accumulation of the proteins. Selective enrichment of messages for the 11S, 7S, and 2S storage proteins occurred in the mRNP fraction during the globular, heart, and torpedo stages of somatic embryogenesis, but the distribution pattern was shifted toward the polysomal fraction at the beginning of cotyledon development. Thus, there was translational repression of storage protein synthesis at the early stage of somatic embryo development that was relieved later. During the cotyledonary development stages in the somatic and zygotic embryos, storage protein synthesis and distribution of the messages were similar in that these specific messages were predominantly in the polysomal fraction.  相似文献   

11.
12.
13.
14.
Cytoplasmic extracts of mouse Taper ascites cells were centrifuged on sucrose gradients to give 0–80 S, monosome, and polysome fractions. CsCl equilibrium density centrifugation of formaldehyde-fixed material from the 0–80 S fraction demonstrated that the messenger RNA in the 0–80 S fraction was in the form of free ribonucleoprotein. The size of the poly(A+)RNA and the size of the poly(A) segments of these molecules were shown to be very similar in both the free mRNP2 and polysome fractions. The labeling kinetics of the free mRNP poly(A+)RNA was similar to that of the polysomal poly(A+)RNA.The free mRNP poly(A+)RNA efficiently stimulated protein synthesis in the wheat germ cell-free system, supporting the view that it was mRNA. Two-dimensional gel electrophoresis was used to analyze the proteins whose synthesis was directed by free mRNP and polysomal poly(A+)RNA. The free mRNP poly(A+)RNA directed the synthesis of a simpler set of abundant protein products than did the polysomal poly(A+)RNA. Most of the free mRNP abundant protein products were also present in the polysomal products, though obvious quantitative differences were evident, indicating that each individual mRNA had its own characteristic distribution between polysomes and the translationally inactive RNP form.  相似文献   

15.
16.
Cap binding protein (CBP)-related polypeptides were identified in different cytoplasmic RNP particles of embryonic chick muscles using monoclonal antibody to purified CBP. A single immunoreactive peptide (Mr 78000) was present in preparations of both free mRNP particles and a novel 10 S translation inhibitory RNP particle. In contrast, proteins isolated from these particles showed two new low-Mr immunoreactive peptides (Mr 43000 and Mr 29000). No CBP related protein could be detected in polysomal mRNP, although an immunoreactive Mr 43000 CBP-related protein was present in polysomes. The relevance of the association of different CBP-related polypeptides with cytoplasmic RNP particles and polysomes are discussed.  相似文献   

17.
The poly(A+)RNA of the free mRNP of mouse Taper ascites cell contains a very reduced number of different mRNA sequences compared to the polysome poly(A+)RNA. By the technique of mRNA:cDNA hybridization we have determined that the free mRNP contains approximately 400 different mRNA sequences while the polysomes contain about 9000 different mRNAs. The free mRNP poly(A+)RNA sequences are present in two abundance classes, the abundant free mRNP class containing 15 different mRNA sequences and the less abundant free mRNP class containing 400 different mRNAs. The polysome poly(A+)RNA consists of three abundance classes of 25, 500 and 8500 different mRNA sequences.Despite its intracellular location in RNP structures not directly involved in protein synthesis the poly(A+)RNA purified from the free RNP of these cells was a very effective template for protein synthesis in cell-free systems. Cell-free translation products of free mRNP and polysome poly(A+)RNAs were analyzed by two-dimensional gel electrophoresis. This analysis confirmed the hybridization result that the free mRNP poly(A+)RNA contained fewer sequences than polysomal poly(A+)RNA. The abundant free RNP-mRNA directed protein products were a subset of the polysome mRNA-directed protein products. The numbers of more abundant products of cell-free protein synthesis directed by the free RNP-mRNA and polysomal mRNA were in general agreement with the hybridization estimates of the number of sequences in the abundant classes of these two mRNA populations.  相似文献   

18.
Nearly all actively translated mRNAs are associated with the cytoskeleton in HeLa cells and the nature of this association is poorly understood. To gain insight into this association, we have examined and compared the cytoskeleton-mRNA interactions of a signal peptide-histone fusion mRNA (membrane-bound polysomal mRNA) to those of endogenous histone mRNA (nonmembrane-bound polysomal mRNA). We report here the detection of a cytoskeleton attachment site within the signal peptide-histone fusion mRNP/mRNA nucleotide sequence that is not present in wild-type histone mRNA or in HLA-B7 and chorionic gonadotropin-α membrane-bound polysomal mRNAs. These results support the possibility that there are multiple mechanisms for the attachment of specific classes of mRNAs to the cytoskeleton.  相似文献   

19.
Proteomic profiling of hempseed proteins from a non-drug type of industrial hemp (Cannabis sativa L.), Cheungsam, was conducted using two-dimensional gel electrophoresis and mass spectrometry. A total of 1102 protein spots were resolved on pH 3-10 immobilized pH gradient strips, and 168 unique protein spots were identified. The proteins were categorized based on function, including involvement in energy regulation (23%), metabolism (18%), stress response (16%), unclassified (12%), cytoskeleton (11%), binding function (5%), and protein synthesis (3%). These proteins might have important biological functions in hempseed, such as germination, storage, or development.  相似文献   

20.
Mitochondrial mRNAs in Trypanosoma brucei undergo extensive insertion and deletion of uridylates that are catalyzed by the RNA editing core complex (RECC) and directed by hundreds of small guide RNAs (gRNAs) that base pair with mRNA. RECC is largely RNA-free, and accessory mitochondrial RNA-binding complex 1 (MRB1) variants serve as scaffolds for the assembly of mRNA-gRNA hybrids and RECC. However, the molecular steps that create higher-order holoenzymes (“editosomes”) are unknown. Previously, we identified an RNA editing helicase 2-associated subcomplex (REH2C) and showed that REH2 binds RNA. Here we showed that REH2C is an mRNA-associated ribonucleoprotein (mRNP) subcomplex with editing substrates, intermediates, and products. We isolated this mRNP from mitochondria lacking gRNA-bound RNP (gRNP) subcomplexes and identified REH2-associated cofactors 1 and 2 (H2F1 and H2F2). H2F1 is an octa-zinc finger protein required for mRNP-gRNP docking, pre-mRNA and RECC loading, and RNP formation with a short synthetic RNA duplex. REH2 and other eukaryotic DEAH/RHA-type helicases share a conserved regulatory C-terminal domain cluster that includes an oligonucleotide-binding fold. Recombinant REH2 and H2F1 constructs associate in a purified complex in vitro. We propose a model of stepwise editosome assembly that entails controlled docking of mRNP and gRNP modules via specific base pairing between their respective mRNA and gRNA cargo and regulatory REH2 and H2F1 subunits of the novel mRNP that may control specificity checkpoints in the editing pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号