首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies suggest that the polychaete taxa Hesionidae and Chrysopetalidae may not represent separate groups, that Pilargidae constitute a subgroup within Hesionidae, and that Hesionides and Microphthalmus are highly derived hesionids. Phylogenetic systematic analyses of Phyllodocida and the subgroup Nereidiformia are presented in order to clarify the position and delineation of these taxa. The phyllodocida analysis includes 18 families representing the majority of the taxa in the group, is rooted with Onuphidae, and is based on 42 absent/present coded morphological characters, obtained mainly from literature. All 69 resulting shortest trees include the clade (Chrysopetalidae, Nereididae, Hesionidae), but with either Syllidae, Nautiliniellidae, Pilargidae or (Aphroditiformia, Pisionidae) as sister. In- and outgroup taxon selection for the Nereidiformia study is dictated by the outcome of Phyllodocida analysis, with scores based on examined species of two chrysopetalids, four hesionids, one nereid, one pilargid, one pisionid, one syllid, plus the putative hesionids Hesionides arenaria and Microphthalmus sp. It is based on 46 absent/present coded morphological characters. Two equally parsimonious trees indicate that chrysopetalids and hesionids are well delineated, that pilargids and hesionids are non-overlapping, and that Microphthalmus and Hesionides are not hesionids.  相似文献   

2.
The phylogeny of Nereidiformia is assessed in a parsimony analysis of combined morphological and DNA data, with special focus on previously questioned relationships between Chrysopetalidae and Hesionidae, between Pilargidae and Hesionidae, and the affinities of Hesionides and Microphthalmus. A 660 bp segment of the mtDNA cytochrome c oxidase subunit I gene was sequenced for two chrysopetalids, one nereidid, one pilargid, one pisionid, two hesionids, plus the two questionable hesionids Hesionides arenaria and Microphthalmus sp. Phylogenetic resolution was poor for the cytochrome c oxidase subunit I gene data alone, but the combined analysis yielded partially robust topologies, suggesting that nereids are the sister group to chrysopetalids, and that pilargids, Hesionides and Microphthalmus do not belong within the hesionids  相似文献   

3.
We assess phylogenetic relationships within the polychaete family Hesionidae from morphological data combined with nucleotide data from 18S rDNA, 28S rDNA, 16S rDNA and COI. Parsimony and Bayesian analyses were performed on two data sets; the first was based on a more restricted set of terminals with both morphological and molecular data (17 ingroup terminals), while the second included additional taxa with morphological data only (25 ingroup terminals). The different sets of terminals yielded fully congruent results, as did the parsimony and the Bayesian analyses. Our results indicate high levels of homoplasy in traditionally used morphological characters in the group, and that Hesioninae, Gyptini and Gyptis are nonmonophyletic. Hesionini (mainly Hesione and Leocrates ), Psamathini (mainly Hesiospina , Micropodarke , Nereimyra , Psamathe and Syllidia ), Ophiodrominae (Gyptini and Ophiodromini) and Ophiodromini (mainly Heteropodarke , Ophiodromus and Podarkeopsis ) are monophyletic and agree with previous classifications, and Hesionini is probably the sister to all other hesionids. The placements of the small hesionids capricornia and Lizardia , the hydrothermal vent taxa Hesiodeira and Hesiolyra , and the newly described Hesiobranchia , remain uncertain.  相似文献   

4.
Phylogeny and classification of Hesionidae (Polychaeta)   总被引:3,自引:1,他引:2  
  相似文献   

5.
The systematic position of Orbiniidae within Polychaeta is still uncertain. In order to provide additional comparative data, we investigated the chaetal arrangement in this family, which is considered valuable for polychaete systematics. Specimens of Scoloplos armiger, Orbinia latreillii, and Pettibonella multiuncinata were examined by SEM and serial sections analysed by computer aided 3D-reconstructions. The obtained data suggest that the chaetal arrangement of Orbiniidae resembles that of other sedentary polychaetes in only a few respects. Transverse rows are only present in the main, anterior part of the chaetal patches of thoracic neuropods. The position of the formative site indicates homology with the transverse rows of several sedentary polychaete taxa. The chaetal patches thus differ significantly from those known in Apistobranchidae. Independent rows with an own caudal formative site, which run along the caudoventral edge of the chaetal patches, resemble the neuropodial ventral longitudinal rows known in Spionidae and related taxa. The abdominal neuropodia of S. armiger and O. latreillii bear longitudinal rows of chaetae. These are reorientated during ontogenetic chaetiger transformation and become the transverse rows of the thoracic chaetal patches. 3D reconstruction of S. armiger revealed that the notopodial chaetal bundles are organized in rows as well. Notopodia and abdominal neuropodia bear deep reaching supportive chaetae. They are the first chaetae formed during neuropodial development and reside dorsally to the longitudinal row of capillary chaetae. Neither position nor structure indicates homology with the supportive chaetae of other sedentary polychaetes. Spionidae and related taxa are thus the only sedentary polychaetes, which specifically resemble Orbiniidae in certain aspects of their chaetal arrangement. Dedicated to Prof. Dr. Wilfried Westheide on the occasion of his 70th birthday.  相似文献   

6.
Parapodial glandular organs (PGOs) of Spiophanes (Polychaeta: Spionidae) were studied using light and electron microscopy. These organs are found in parapodia of the mid body region, starting on chaetiger 5 and terminating with the appearance of neuropodial hooks (chaetiger 14 or 15 in adult individuals). Large PGOs in anterior chaetigers display different species‐specific types of openings whereas small PGOs in posterior parapodia of the mid body region always open in a simple vertical slit. Each PGO is composed of three main complexes: (1) the glandular sac with several distinct epithelia of secretory cells and secretory cell complexes and the reservoir filled with fibrous material, (2) the gland‐associated chaetal complex (including the region of chaetoblasts and follicle cells, follicular canals, two chaetal collector canals, the combined conducting canal, the chaetal spreader including the opening of the glandular organ with associated type‐1 secretory cells, and the gland‐associated chaetae), and (3) a bilayered musculature surrounding the gland. A considerable number of different cell types are involved in the secretory activity, in the guidance of the gland‐associated chaetae, and in the final expulsion of the fibrous secretion at the opening slit. Among these different cell types the type‐5 secretory cells of the proximal glandular complex with their cup‐shaped microvilli emanating thick microfibrils into the lumen of the glandular sac are most conspicuous. Secretory cells with cup‐shaped microvilli being involved in the production of β‐chitin microfibrils have so far only been reported from some representatives of the deep‐sea inhabiting Siboglinidae (Polychaeta). We suggest that the gland‐associated chaetae emerging from inside the PGOs of Spiophanes are typical annelid chaetae formed by chaetoblasts and follicle cells. Functional morphology implies the crucial role of PGOs in tube construction. Furthermore, the PGOs are discussed in consideration of phylogenetic aspects. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
Shells of chambered nautilus (Nautilus spp. Linnaeus and Allonautilus spp. Ward and Saunders) are well-known collectibles, traded across the globe from their Indo-Pacific origins. Live animals and a variety of products made from shells are also traded internationally. In preparation for the 15th Meeting of the Conference of the Parties to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), the United States Fish and Wildlife Service (FWS) and the National Marine Fisheries’ Service (NMFS) were asked to propose listing the chambered nautilus in CITES Appendix-II. To evaluate such a listing, nautilus life history traits, conservation status, primary threats, and legal protections were examined in conjunction with known legal and illegal international trade in these taxa. Indications are that certain intrinsic life history traits (such as slow growth and delayed maturation) in combination with extrinsic pressures (such as habitat destruction and unregulated wild harvest) render chambered nautiluses vulnerable, at least locally, to overharvest and may increase their risk of extinction. However, biological and status information as well as trade, fishery, and industry data are insufficient to fully assess the impact of trade on these taxa. The special session on extant nautilus conservation, convened during the 8th International Symposium: Cephalopods - Present and Past (8ISCPP), provided an opportunity to work directly with many of the peer-acknowledged world nautilid experts to address existing knowledge gaps. Activities are underway to continue the assessment of this living fossil.  相似文献   

8.
To address the functional contributions of capillary chaetae in the maldanid polychaete Clymenella torquata, we compared irrigation efficiency and tube structure for animals with intact and trimmed capillary chaetae. We measured pumping rates for worms before and after they were anaesthetized and subjected either to capillary trimming or mock trimming, i.e. handling without trimming. Worms with trimmed chaetae were significantly less effective at moving water through their tubes than those with intact chaetae. There were no significant differences in the ability of control worms to move water within their tubes. No significant changes in rates of peristalsis were observed among experimental or control groups. These data strongly suggest that body musculature and capillary chaetae work in concert to hold worms in position within tubes during peristaltic pumping. When chaetae are shortened, the body musculature must contract to a greater degree, increasing the functional diameter of the worm to achieve the necessary traction with the tube wall, resulting in less efficient irrigation. We also compared the inner diameters of original field tubes to tubes built by control worms or worms after capillary trimming. The inner diameters of new tubes built by worms with shortened chaetae were larger than their original tubes, while those of both control groups were not. One possible explanation is that the chaetae have a sensory role and shortened chaetae send the false message that the nascent tube walls are farther away than they are, the body contracts in compensation and the tube is widened, however this idea has not been tested.  相似文献   

9.
Echiura is traditionally regarded as a small phylum of unsegmented spiralian worms. Molecular analyses, however, provide unquestionable evidence that Echiura are derived annelids that lost segmentation. Like annelids, echiurans possess chaetae, a single ventral pair in all species and one or two additional caudal hemi-circles of chaetae in two subgroups, but their evolutionary origin and affiliation to annelid chaetae are unresolved. Since annelids possess segmental pairs of dorsal (notopodial) and ventral (neuropodial) chaetae that are arranged in a row, the ventral chaetae in Echiura either represent a single or a paired neuropodial group of chaetae, while the caudal circle may represent fused rows of chaetae. In annelids, chaetogenesis is generally restricted to the ventral part of the notopodial chaetal sac and to the dorsal part of the neuropodial chaetal sac. We used the exact position of the chaetal formation site in the echiuran species, Thalassema thalassemum (Pallas, 1766) and Echiurus echiurus (Pallas, 1767), to test different hypotheses of the evolution of echiurid chaetae. As in annelids, a single chaetoblast is responsible for chaetogenesis in both species. Each chaeta of the ventral pair arises from its own chaetal sac and possesses a lateral formation site, evidencing that the pair of ventral chaetae in Echiura is homologous to a pair of neuropodia that fused on the ventral side, while the notopodia were reduced. Both caudal hemi-circles of chaetae in Echiurus echiurus are composed of several individual chaetal sacs, each with its own formative site. This finding argues against a homology of these hemi-circles of chaetae and annelids’ rows of chaetae and leads to the hypothesis that the caudal chaetal rings evolved once within the Echiura by multiplication of ventral chaetae.  相似文献   

10.
Sabellid and sabellariid polychaetes are regarded as sister groups in a number of recent phylogenetic analyses. This is based mainly on a shared specific arrangement of chaetae referred to as chaetal inversion. Remarkably, the uncini have a notopodial position in the abdomen, whereas capillary chaetae occur in the neuropodia in both taxa in contrast to the situation in putative relatives. However, in sabellids uncini and capillary chaetae change their position completely at the border between thorax and abdomen, whereas uncini are missing in the parathorax of Sabellariidae. Due to this difference the significance of the chaetal inversion for systematics has been subject to discussion for years. Serial semithin sections of parapodia of the Sabellidae Sabella pavonina, Branchiomma bombyx, Fabricia stellaris, and of the Sabellariidae Sabellaria alveolata were studied in order to obtain detailed information on their chaetal arrangement and sites of chaetal origin. SEM investigations and computer-aided 3D-reconstructions provide deep insight into the spatial organization of the rami. Though differing externally, the principal chaetal arrangement and the location of the formative sites turned out to be almost identical within the species of Sabellidae. Most chaetae are aligned in straight transverse rows with a dorsal site of origin within neuropodia and a ventral one in notopodia as is common in sedentary polychaetes. Semicircular and spiral arrangements are revealed to be modified transverse rows. Only in thoracic notopodia does an additional dorsocaudal formative site form distinct rows. The chaetal inversion in Sabellidae is additionally characterized by an abrupt change of capillary chaetae and uncini along with a sudden change of the parapodial morphology at the border between thorax and abdomen. All chaetae of S. alveolata are aligned in transverse rows with the same location of the formative sites as in sabellids and other sedentary polychaetes. However, in contrast to sabellids the chaetae are not inverted across a parathoracic abdominal border. Moreover, there is no inversion of the parapodial structure from parathorax to abdomen and the neuropodial chaetal composition changes gradually from parathorax to abdomen. The chaetal arrangement in Sabellariidae thus cannot be described as inverted along the body-axis as in Sabellidae. Evolutionary steps implied by the assumption of an inverted chaetal pattern in a supposed common ancestor are discussed. It is concluded that the specific chaetal arrangement of Sabellidae and Sabellariidae arose independently and therefore provides no support for a sistergroup relationship of sabellids and sabellariids.  相似文献   

11.
An integrated microscopic (light and electron microscopy) and macroscopic investigation of chambered pith development was made of Phytolacca americana L. Terminal internodes have a solid pith cylinder in contrast to the alternating diaphragms and chambers occurring in subjacent pith. Macroscopically, chambers and diaphragms of any one internode are of equal size. Microscopically, diaphragms vary in height within an internode (from 1–6 cells high). Nevertheless, all diaphragms become thicker circumferentially (5–12 cells high) and connect with long files of intact peripheral pith cells. Diaphragm cells have a large centrally positioned vacuole with a thin, parietal layer of cytoplasm; nuclei, mitochondria, endoplasmic reticulum, and unidentified organelles differentiate in the cytoplasm of diaphragm cells. Although schizogenous activity has most often been implicated as the mechanism by which chambered pith develops in vegetative organs of angiosperms, the results of this study show that cavities in pokeweed result from both schizogenous and lysigenous mechanisms. Schizogeny is suggested by the fact that central pith cells of terminal internodes are longer and thinner walled than peripheral pith cells arranged in vertical files, thus indicating elongation of cells as a possible result of internode elongation. The precise developmental pattern and arrangement of chambers and diaphragms also suggest schizogenous processes. Lysigenous or enzymatic activity is indicated by the fact that cavities are bounded by broken cells, and wall fragments and organelles are often found within enlarging cavities. Chamber formation occurs continuously acropetally and centrifugally in the central pith. A comparison of diaphragms is made with Liriodendron tulipifera and Juglans nigra in an attempt to resolve differences in structure and terminology regarding the differentiation of chambered and diaphragmed pith.  相似文献   

12.
The identification of pollen plays an important role in ecology, palaeo‐climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error‐prone task. Next‐generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next‐generation sequencing of amplicons from the highly variable, species‐specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high‐throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next‐generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge.  相似文献   

13.
Vestimentiferans (Siboglinidae, Polychaeta) live as juveniles and adults in an obligate mutualistic association with thiotrophic bacteria. Since their development is aposymbiotic, metatrochophores of vestimentiferans from the East Pacific Rise colonizing deep-sea hydrothermal vents are infected with the specific symbiont, develop the trophosome, and reduce their digestive system. To gain insight into the anatomy and ultrastructure and to compare this stage with metatrochophores from other siboglinids, we serial sectioned and reconstructed three specimens using light and transmission electron microscopy. The metatrochophore was composed of a prostomium, a small peristomium, two chaetigers (or two chaetigers and one additional segment without chaetae), and a minute pygidium. A digestive system and an intraepidermal nervous system were developed. Larval organs such as the prototroch, the neurotroch, and an apical organ were present, along with juvenile/adult organs such as tentacles, uncini, pyriform glands, and the anlage of the nephridial organ. We propose that in vestimentiferans, the vestimentum is the head arising from the prostomium, peristomium, and the anterior part of the first chaetiger. In frenulates, in contrast, the head is composed on the one hand of the cephalic lobe arising from the prostomium and on the other of the forepart developing from the peristomium and the anterior part of the first chaetiger. In frenulates the muscular septum between the forepart and trunk develops later than the first two chaetigers. Since this septum has no counterpart in vestimentiferans, the forepart-trunk border of frenulates is not considered homologous with the vestimentum-trunk border in vestimentiferans. The obturacular region in vestimentiferans does not appear to be a body region but rather the head appendages arising from the first chaetiger. In contrast, the tentacles in frenulates are prostomial head appendages. In both taxa, the trunk is the posterior part of the first chaetiger, and the opisthosoma is the following chaetigers and the pygidium. Comparisons with other polychaetes suggest that two larval segments are autapomorphic for the monophyletic Siboglinidae.  相似文献   

14.
15.
Cyperaceae are the third largest monocotyledon family, with considerable economic and conservation importance. In subfamily Mapanioideae there is particular specialization of the inflorescence into units termed spicoids. The structural homology of the spicoid is difficult to interpret, making determination of intrafamilial relationships problematic. To address this, pollen from eight species in Mapanioideae was investigated using light microscopy and scanning and transmission electron microscopy. Pollen development was also examined to identify the type of pollen present in these species. We also analyzed DNA sequence data using the trnL-F and rps16 regions from 25 genera and 35 species of Cyperaceae, Juncaceae, and Thurniaceae. Two types of pollen, Mapania-type and pseudomonad, were identifed. Analysis of combined DNA and pollen data resolved a clade sister to the rest of Cyperaceae, corresponding to Mapanioideae. Within this, two further clades were resolved. One comprised taxa assigned to tribe Hypolytreae, which had Mapania-type pollen. The other comprised taxa mainly assigned to tribe Chrysitricheae, but included two taxa from Hypolytreae, Capitularina and Exocarya. All taxa in this clade had pseudomonad pollen. Thus new groupings within the subfamily have been discovered based on the specialization of some taxa in terms of their pollination biology.  相似文献   

16.
17.
Lee OH  Hyde KD 《Mycologia》2002,94(4):596-606
Many methods have been used to study phylloplane fungi, most of which have constraints and may result in biased results. This study used light microscopy and scanning electron microscopy (SEM) to investigate fungal abundance on the leaves of the most common mangrove trees in Hong Kong, Kandelia candel and Aegiceras corniculatum. Species richness was investigated using light microscopy and a leaf washing method. Methods to study phylloplane fungi are discussed and the performances of these three investigation methods are evaluated. Seven mitosporic fungal taxa were found by light microscopy, while 30 sporulating taxa and 18 Mycelia sterilia were isolated using the leaf washing method. Fungal abundance in terms of percentage cover investigated with light microscopy was similar using the SEM method, and was significantly higher on Aegiceras corniculatum than on Kandelia candel. Fungal abundance peaked in the summer and was lowest in the winter. This study indicates that light microscopy reveals the most typical phylloplane fungi and is more efficient than SEM, while the leaf washing method reveals many casual species and is not quantitative.  相似文献   

18.
Summary In recently collected specimens of Acanthobdella peledina the nervous system, the genital organs and the coelomic organisation were reinvestigated after complete serial sections. These anatomical results are schematically represented. In addition, the integument, the chaetae and the peripheral muscle layer were investigated by electron microscopy. In general, the results confirm Livanow's classic monograph (1906), with the exception of a few details. The body apparently possesses neither a prostomium nor an achaetous buccal region (peristomium). The number of 29 true segments is concluded from the number of segmental ganglia. The five anteriormost segments, each with four pairs of hookshaped chaetae arranged around the mouth opening, are considered to be functionally equivalent to an anterior sucker. The ultrastructure of the integument and the chaetae generally conforms to the typical annelidan pattern. The muscle cells are of the typical hirudinean type. The outer male genital pore is positioned in segment 10; the female organs open in segment 11 directly behind the septum between segments 10 and 11. The main emphasis is laid on the evaluation of the position of the taxon within the Clitellata, including a discussion of the Branchiobdellida, and the cladograms presented show the Acanthobdellida to be the sister group of the Euhirudinea. Characters shared by the Branchiobdellida and Hirudinea (including A. peledina) are considered to be convergently evolved.  相似文献   

19.
Well-preserved organic-walled microfossils referred to as acritarchs occur abundantly in Ediacaran deposits in the Officer Basin in Australia. The assemblages are taxonomically diverse, change over short stratigraphical intervals and are largely facies independent across marine basins. Affinities of this informal group of fossils to modern biota are poorly recognized or unknown, with the exception of only a few taxa. Morphological studies by use of transmitted light microscopy, geochemical analyses and other lines of evidence, suggest that some Precambrian acritarchs are related to algae (including prasinophytes, chlorophytes, and perhaps also dinoflagellates). Limitations in magnification and resolution using transmitted light microscopy may be relevant when assessing relationships to modern taxa. Scanning electron microscopy reveals details of morphology, microstructure and wall surface microelements, whereas transmission electron microscopy provides high-resolution images of the cell wall ultrastructure. In the light of previous ultrastructural studies it can be concluded that the division of acritarchs into leiospheres (unornamented) and acanthomorphs (ornamented) is entirely artificial and has no phylogenetic meaning. Examination of Gyalosphaeridium pulchrum using transmission electron microscopy reveals a vesicle wall with four distinct layers. This multilayered wall ultrastructure is broadly shared by a range of morphologically diverse acritarchs as well as some extant microalgae. The chemically resistant biopolymers forming the comparatively thick cell, together with the overall morphology support the interpretation of the microfossil as being in the resting stage in the life cycle. The set of features, morphological and ultrastructural, suggests closer relationship to green algae than dinoflagellates.  相似文献   

20.
The diversity of Scenedesmus and Scenedesmus -like taxa from Itasca State Park, Minnesota was assessed using light microscopy and molecular techniques. Thirty isolates from various ponds and lakes in Itasca State Park were examined. Light microscopy showed many similarities in morphology among isolates, but PCR-RFLP analysis of the ribosomal ITS region from these isolates revealed twenty different types. A previous study from Itasca State Park using only light microscopy found only six taxa of Scenedesmus ; however, our results suggest that there is much greater diversity than previously suspected. DNA sequences of the 5.8S ribosomal subunit and the ITS-2 region from our isolates are presently being determined and will be used to assess this diversity in greater detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号