首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retinoblastoma gene product (pRB) participates in regulating mammalian cell replication. The mechanism responsible for pRB's growth regulatory activity is uncertain. However, pRB is known to bind viral transforming proteins including the papilloma virus E7 protein, cellular proteins, and DNA. pRB contains a critical domain termed the "binding pocket" which is required for binding activities. This binding pocket contains 8 cysteine residues. A naturally occurring mutation affecting one of these cysteines is known to eliminate pRB's protein and DNA binding activities. To investigate the cysteine residues in pRB's binding pocket, each residue was mutated to alanine, phenylalanine, or serine. These mutant genes were used to prepare pRBs harboring specific amino acid substitutions. Individual mutations at positions 407, 553, 666, and 706 depressed pRB binding to E7 protein, DNA, and a conformation-specific anti-pRB antibody, XZ133. Combinations of these inhibitory mutations exhibited additive inhibitory effects on pRB's binding properties. Mutations at positions 438, 489, 590, 712, and 853 did not affect pRB binding to E7 protein, DNA, or the XZ133 antibody. Combination of these five neutral mutations yielded a pRB species with full E7 protein, DNA, and XZ133 binding activities. These studies indicate that the cysteine residues at positions 407, 553, 666, and 706 contribute to the E7 protein and DNA binding properties of pRB and appear to do so by maintaining pRB's normal conformation.  相似文献   

2.

Background  

One of the major cellular serine/threonine protein phosphatases is protein phosphatase type 1 (PP1). Studies employing many eukaryotic systems all point to a crucial role for PP1 activity in controlling cell cycle progression. One physiological substrate for PP1 appears to be the product of the retinoblastoma susceptibility gene (pRB), a demonstrated tumor suppressor. The growth suppressive activity of pRB is regulated by its phosphorylation state. Of critical importance is the question of the in vivo effect of PP1 activity on pRB and growth regulation. As a first step towards addressing this question, we developed an inducible PP1 expression system to investigate the regulation of PP1 activity.  相似文献   

3.
K Helin  J A Lees  M Vidal  N Dyson  E Harlow  A Fattaey 《Cell》1992,70(2):337-350
  相似文献   

4.
5.
6.
Dick FA  Dyson NJ 《Journal of virology》2002,76(12):6224-6234
A critical event in papillomavirus transformation of human cells is the inactivation of pRB by the E7 protein. E7, like many other viral oncoproteins, possesses a well-characterized LXCXE peptide motif that interacts with the pocket domain of pRB. Disruption of the LXCXE-binding cleft on pRB renders it resistant to E7 binding and inactivation. Such binding cleft mutants of pRB are capable of inducing a G(1) arrest in the human papillomavirus 18-transformed HeLa cell line. We show here that the efficient inactivation of pRB in HeLa cells does not simply depend on the integrity of the LXCXE-binding cleft. Multiple site-directed mutants that alter conserved surfaces of the pRB pocket domain cause HeLa cells to accumulate in G(1). We divide these mutants into two classes: those that can be bound by E7 and those that cannot. The E7 interacting mutants include changes in conserved residues that lie in a groove between the A and B halves of the pocket. Surprisingly, none of these mutants show a clear defect in any of the known mechanisms for pRB inactivation by E7. Analysis of mutants that are compromised for E7 binding reveals that this interaction depends on both the LXCXE-binding cleft and on a conserved group of lysines adjacent to the cleft. These basic amino acids on pRB define a discrete interaction point with E7. These residues most likely form ionic interactions with conserved acidic amino acids on E7 since a stable pRB/E7 interaction was restored when the lysine residues on pRB and the acidic residues on E7 were interchanged.  相似文献   

7.
8.
9.
10.

Background

The G1-S phase transition is critical to maintaining proliferative control and preventing carcinogenesis. The retinoblastoma tumor suppressor is a key regulator of this step in the cell cycle.

Results

Here we use a structure–function approach to evaluate the contributions of multiple protein interaction surfaces on pRB towards cell cycle regulation. SAOS2 cell cycle arrest assays showed that disruption of three separate binding surfaces were necessary to inhibit pRB-mediated cell cycle control. Surprisingly, mutation of some interaction surfaces had no effect on their own. Rather, they only contributed to cell cycle arrest in the absence of other pRB dependent arrest functions. Specifically, our data shows that pRB–E2F interactions are competitive with pRB–CDH1 interactions, implying that interchangeable growth arrest functions underlie pRB’s ability to block proliferation. Additionally, disruption of similar cell cycle control mechanisms in genetically modified mutant mice results in ectopic DNA synthesis in the liver.

Conclusions

Our work demonstrates that pRB utilizes a network of mechanisms to prevent cell cycle entry. This has important implications for the use of new CDK4/6 inhibitors that aim to activate this proliferative control network.
  相似文献   

11.
The human papillomavirus E7 gene can transform murine fibroblasts and cooperate with other viral oncogenes in transforming primary cell cultures. One biochemical property associated with the E7 protein is binding to the retinoblastoma tumor suppressor gene product (pRB). Biochemical properties associated with pRB include binding to viral transforming proteins (E1A, large T, and E7), binding to cellular proteins (E2F and Myc), and binding to DNA. The mechanism by which E7 stimulates cell growth is uncertain. However, E7 binding to pRB inhibits binding of cellular proteins to pRB and appears to block the growth-suppressive activity of pRB. We have found that E7 also inhibits binding of pRB to DNA. A 60-kDa version of pRB (pRB60) produced in reticulocyte translation reactions or in bacteria bound quantitatively to DNA-cellulose. Recombinant E7 protein used at a 1:1 or 10:1 molar ratio with pRB60 blocked 50 or greater than 95% of pRB60 DNA-binding activity, respectively. A mutant E7 protein (E7-Ala-24) with reduced pRB60-binding activity exhibited a parallel reduction in its blocking of pRB60 binding to DNA. An E7(20-29) peptide that blocks binding of E7 protein to pRB60 restored the DNA-binding activity of pRB60 in the presence of E7. Peptide E7(2-32) did not block pRB60 binding to DNA, while peptide E7(20-57) and an E7 fragment containing residues 1 to 60 partially blocked DNA binding. E7 species containing residues 3 to 75 were fully effective at blocking pRB60 binding to DNA. These studies indicate that E7 protein specifically blocks pRB60 binding to DNA and suggest that the E7 region responsible for this property lies between residues 32 and 75. The functional significance of these observations is unclear. However, we have found that a point mutation in pRB60 that impairs DNA-binding activity also blocks the ability of pRB60 to inhibit cell growth. This correlation suggests that the DNA-binding activity of retinoblastoma proteins contributes to their biological properties.  相似文献   

12.
Cell cycle-dependent, site-specific phosphorylation of the retinoblastoma protein, pRB, is mediated by cyclin-dependent kinases (CDKs) and regulates the binding of pRB to many proteins. We previously showed that the interaction of pRB with E2F on DNA was regulated by the accumulation of phosphate groups on pRB. Here we show that positively charged lysine residues in the B domain of pRB are necessary for the release of pRB from E2F on DNA following phosphorylation by cyclin E-cdk2 kinase. These lysine residues are also important in the binding of the simian virus 40 large T antigen (TAg) to pRB, and mutation of these lysines to arginines alters the dependency of the pRB-TAg interaction on phosphorylation of pRB.  相似文献   

13.
14.
N Dyson  P Guida  K Münger    E Harlow 《Journal of virology》1992,66(12):6893-6902
Studies of adenovirus E1A oncoprotein mutants suggest that the association of E1A with the retinoblastoma protein (pRB) is necessary for E1A-mediated transformation. Mutational analysis of E1A indicates that two regions of pRB are required for E1A to form stable complexes with the retinoblastoma protein. In addition to pRB binding, these regions are necessary for E1A association with several other cellular proteins, including p130, p107, cyclin A, and p33cdk2. Here we show that short synthetic peptides containing the pRB-binding sequences of E1A are sufficient for interaction with p107, cyclin A, and p130. The E7 protein of human papillomavirus type 16 contains an element that binds to pRB and appears to be functionally homologous to the E1A sequences. Peptides containing this region of the E7 protein were able to interact with p107, cyclin A, and p130 in addition to pRB. These findings suggest that the common mechanism of transformation used by these viral oncogenes involves their association with a set of polypeptides.  相似文献   

15.
The retinoblastoma tumor suppressor gene (RB1) is currently the only known gene whose mutation is necessary and sufficient for the development of a human cancer. Mutation or deregulation of RB1 is observed so frequently in other tumor types that compromising RB1 function may be a prerequisite for malignant transformation. Identifying the molecular mechanisms that provide the basis for RB1-mediated tumor suppression has become an important goal in the quest to understand and treat cancer. The lion's share of research on these mechanisms has focused on the carboxy-terminal half of the RB1 encoded protein (pRB). This focus is with good reason since this part of the protein, now called the "large pocket," is required for most of its known activities identified in vitro and in vivo. Large pocket mediated mechanisms alone, however, cannot account for all observed properties of pRB. The thesis presented here is that the relatively uncharacterized amino-terminal half of the protein makes important contributions to pRB-mediated tumor suppression. The goals of this review are to summarize evidence indicating that an amino-terminal structural domain is important for pRB function and to suggest a general hypothesis as to how this domain can be integrated with current models of pRB function.  相似文献   

16.

Background  

The E1 protein of Hepatitis C Virus (HCV) can be dissected into two distinct hydrophobic regions: a central domain containing an hypothetical fusion peptide (FP), and a C-terminal domain (CT) comprising two segments, a pre-anchor and a trans-membrane (TM) region. In the currently accepted model of the viral fusion process, the FP and the TM regions are considered to be closely juxtaposed in the post-fusion structure and their physical interaction cannot be excluded. In the present study, we took advantage of the natural sequence variability present among HCV strains to test, by purely sequence-based computational tools, the hypothesis that in this virus the fusion process involves the physical interaction of the FP and CT regions of E1.  相似文献   

17.
The SV40 T antigen (T)/adenovirus E1A-binding domain of the retinoblastoma gene product (pRB) has been fused to S. japonicum glutathione S-transferase, and the chimera, bound to insoluble glutathione, was used to search for cellular proteins that can interact specifically with pRB. At least seven such proteins were detected in extracts of multiple human tumor cell lines. These proteins failed to bind to a family of pRB fusion proteins that harbor inactivating mutations in the T/E1A-binding domain and to the wild-type fusion protein in the presence of a peptide replica of the pRB-binding domain of T. Therefore, the binding of one or more of these proteins may contribute to the growth-suppressing function of pRB.  相似文献   

18.
19.
We have studied the initial effects of adenovirus E1A expression on the retinoblastoma (RB) gene product in normal quiescent cells. Although binding of the E1A products to pRB could, in theory, make pRB phosphorylation unnecessary for cell cycle progression, we have found that the 12S wild-type E1A product is capable of inducing phosphorylation of pRB in normal quiescent cells. The induction of pRB phosphorylation correlates with E1A-mediated induction of p34cdc2 expression and kinase activity, consistent with the possibility that p34cdc2 is a pRB kinase. Expression of simian virus 40 T antigen induces similar effects. Induction of pRB phosphorylation is independent of the pRB binding activity of the E1A products; E1A domain 2 mutants do not bind detectable levels of pRB but remain competent to induce pRB phosphorylation and to activate cdc2 protein kinase expression and activity. Although the kinetics of induction are slower, domain 2 mutants induce wild-type levels of pRB phosphorylation and host cell DNA synthesis and yet fail to induce cell proliferation. These results imply that direct physical interaction between the RB and E1A products does not play a required role in the early stages of E1A-mediated cell cycle induction and that pRB phosphorylation is not, of itself, sufficient to allow quiescent cells to divide. These results suggest that the E1A products do not need to bind pRB in order to stimulate resting cells to enter the cell cycle. Indeed, a more important role of the RB binding activity of the E1A products may be to prevent dividing cells from returning to G0.  相似文献   

20.

Background  

The retinoblastoma protein (Rb) plays a central role in the regulation of cell cycle, differentiation and apoptosis. In cancer cells, ablation of Rb function or its pathway is a consequence of genetic inactivation, viral oncoprotein binding or deregulated hyperphosphorylation. Some recent data suggest that Rb relocation could also account for the regulation of its tumor suppressor activity, as is the case for other tumor suppressor proteins, such as p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号