首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Bacterial inclusion bodies (IBs) are key intermediates for protein production. Their quality affects the refolding yield and further purification. Recent functional and structural studies have revealed that IBs are not dead-end aggregates but undergo dynamic changes, including aggregation, refunctionalization of the protein and proteolysis. Both, aggregation of the folding intermediates and turnover of IBs are influenced by the cellular situation and a number of well-studied chaperones and proteases are included. IBs mostly contain only minor impurities and are relatively homogenous.  相似文献   

2.

Background  

In recent years, it has been gradually realized that bacterial inclusion bodies (IBs) could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D). As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further.  相似文献   

3.

Background  

In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry.  相似文献   

4.
The recombinant OmpF porin of Yersinia pseudotuberculosis as a model of transmembrane protein of the β-barrel structural family was used to study low growth temperature effect on the structure of the produced inclusion bodies (IBs). This porin showed a very low expression level in E. coli at a growth temperature below optimal 37 °C. The introduction of a N-terminal hexahistidine tag into the mature porin molecule significantly increased the biosynthesis of the protein at low cultivation temperatures. The recombinant His-tagged porin (rOmpF-His) was expressed in E. coli at 30 and 18 °C as inclusion bodies (IB-30 and IB-18). The properties and structural organization of IBs, as well as the structure of rOmpF-His solubilized from the IBs with urea and SDS, were studied using turbidimetry, electron microscopy, dynamic light scattering, optical spectroscopy, and amyloid-specific dyes. IB-18, in comparison with IB-30, has a higher solubility in denaturants, suggesting a difference between IBs in the conformation of the associated polypeptide chains. The spectroscopic analysis revealed that rOmpF-His IBs have a high content of secondary structure with a tertiary-structure elements, including a native-like conformation, the proportion of which in IB-18 is higher than in IB-30. Solubilization of the porin from IBs is accompanied by a modification of its secondary structure. The studied IBs also contain amyloid-like structures. The results obtained in this study expand our knowledge of the structural organization of IBs formed by proteins of different structural classes and also have a contribution into the new approaches development of producing functionally active recombinant membrane proteins.  相似文献   

5.
Aggregation is a serious obstacle for recovery of biologically active heterologous proteins from inclusion bodies (IBs) produced by recombinant bacteria. E. coli transformed with a vector containing the cDNA for Bothropstoxin-1 (BthTx-1) expressed the recombinant product as IBs. In order to obtain the native toxin, insoluble and aggregated protein was refolded using high hydrostatic pressure (HHP). IBs were dissolved and refolded (2 kbar, 16 h), and the effects of protein concentration, as well as changes in ratio and concentration of oxido-shuffling reagents, guanidine hydrochloride (GdnHCl), and pH in the refolding buffer, were assayed. A 32% yield (7.6 mg per liter of bacterial culture) in refolding of the native BthTx-1 was obtained using optimal conditions of the refolding buffer (Tris–HCl buffer, pH 7.5, containing 3 mM of a 2:3 ratio of GSH/GSSG, and 1 M GdnHCl). Scanning electron microscopy (SEM) showed that that disaggregation of part of IBs particles occurred upon compression and that the morphology of the remaining IBs, spherical particles, was not substantially altered. Dose-dependent cytotoxic activity of high-pressure refolded BthTx-1 was shown in C2C12 muscle cells.  相似文献   

6.

Background  

Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces.  相似文献   

7.

Background

We present the potential of inclusion bodies (IBs) as a protein delivery method for polymeric filamentous proteins. We used as cell factory a strain of E. coli, a conventional host organism, and keratin 14 (K14) as an example of a complex protein. Keratins build the intermediate filament cytoskeleton of all epithelial cells. In order to build filaments, monomeric K14 needs first to dimerize with its binding partner (keratin 5, K5), which is then followed by heterodimer assembly into filaments.

Results

K14 IBs were electroporated into SW13 cells grown in culture together with a ??reporter?? plasmid containing EYFP labeled keratin 5 (K5) cDNA. As SW13 cells do not normally express keratins, and keratin filaments are built exclusively of keratin heterodimers (i.e. K5/K14), the short filamentous structures we obtained in this study can only be the result of: a) if both IBs and plasmid DNA are transfected simultaneously into the cell(s); b) once inside the cells, K14 protein is being released from IBs; c) released K14 is functional, able to form heterodimers with EYFP-K5.

Conclusions

Soluble IBs may be also developed for complex cytoskeletal proteins and used as nanoparticles for their delivery into epithelial cells.  相似文献   

8.

Background  

Inactive protein inclusion bodies occur commonly in Escherichia coli (E. coli) cells expressing heterologous proteins. Previously several independent groups have found that active protein aggregates or pseudo inclusion bodies can be induced by a fusion partner such as a cellulose binding domain from Clostridium cellulovorans (CBDclos) when expressed in E. coli. More recently we further showed that a short amphipathic helical octadecapeptide 18A (EWLKAFYEKVLEKLKELF) and a short beta structure peptide ELK16 (LELELKLKLELELKLK) have a similar property.  相似文献   

9.

Background  

The molecular mechanics of inclusion body formation is still far from being completely understood, specially regarding the occurrence of properly folded, protein species that exhibit natural biological activities. We have here comparatively explored thermally promoted, in vivo protein aggregation and the formation of bacterial inclusion bodies, from both structural and functional sides. Also, the status of the soluble and insoluble protein versions in both aggregation systems have been examined as well as the role of the main molecular chaperones GroEL and DnaK in the conformational quality of the target polypeptide.  相似文献   

10.
The production of recombinant proteins in the microbial host Escherichia coli often results in the formation of cytoplasmic protein inclusion bodies (IBs). Proteins forming IBs are often branded as difficult-to-express, neglecting that IBs can be an opportunity for their production. IBs are resistant to proteolytic degradation and contain up to 90% pure recombinant protein, which does not interfere with the host metabolism. This is especially advantageous for host-toxic proteins like antimicrobial peptides (AMPs). IBs can be easily isolated by cell disruption followed by filtration and/or centrifugation, but conventional techniques for the recovery of soluble proteins from IBs are laborious. New approaches therefore simplify protein recovery by optimizing the production process conditions, and often include mild resolubilization methods that either increase the yield after refolding or avoid the necessity of refolding all together. For the AMP production, the IB-based approach is ideal, because these peptides often have simple structures and are easy to refold. The intentional IB production of almost every protein can be achieved by fusing recombinant proteins to pull-down tags. This review discusses the techniques available for IB-based protein production before considering technical approaches for the isolation of IBs from E. coli lysates followed by efficient protein resolubilization which ideally omits further refolding. The techniques are evaluated in terms of their suitability for the process-scale production and downstream processing of recombinant proteins and are discussed for AMP production as an example.  相似文献   

11.
The effect of the concentration of an inducer (IPTG) and the time of induction at 37°С on the heterologous synthesis of the mature membrane protein phospholipase А1 (PldA) from Yersinia pseudotuberculosis in the form of inclusion bodies (IBs) and on the physicochemical and structural characteristics of IBs has been studied. The sizes, shape, stability (solubility in urea and detergents, resistance against proteolysis), the secondary structure of the protein of IBs, and the presence of amyloid structures have been determined by electron microscopy, dynamic light scattering, and optical spectroscopy. It was found that IBs have a shape close to spherical and a rough surface and are cleaved by proteinase K. The protein contained in IBs has an ordered secondary structure with a high content of β-structure. As the inducer concentration and the time of expression increase, the conformation of the recombinant protein in IBs undergoes changes, as indicated by an increase in the stability of IBs and a decrease in the enzymatic activity of the protein. When IBs are dissolved in 0.06% SDS and 5 M urea, the recombinant protein retains the secondary structure in a partially modified form, and the addition of a zwitterionic detergent at a micellar concentration does not transform the protein conformation into the native one.  相似文献   

12.

Background  

When heterologous recombinant proteins are produced in Escherichia coli, they often precipitate to form insoluble aggregates of unfolded polypeptides called inclusion bodies. These structures are associated with chaperones like IbpA. However, there are reported cases of "non-classical" inclusion bodies in which proteins are soluble, folded and active.  相似文献   

13.

Background  

For a long time IBs were considered to be inactive deposits of accumulated target proteins. In our previous studies, we discovered IBs containing a high percentage of correctly folded protein that can be extracted under non-denaturing conditions in biologically active form without applying any renaturation steps. In order to widen the concept of correctly folded protein inside IBs, G-CSF (granulocyte colony stimulating factor) and three additional proteins were chosen for this study: GFP (Green fluorescent protein), His7dN6TNF-α (Truncated form of Tumor necrosis factor α with an N-terminal histidine tag) and dN19 LT-α (Truncated form of Lymphotoxin α).  相似文献   

14.
Expression of recombinant proteins in Escherichia coli is normally accompanied by the formation of inclusion bodies (IBs). To obtain the protein product in an active (native) soluble form, the IBs must be first solubilized, and thereafter, the soluble, often denatured and reduced protein must be refolded. Several technically feasible alternatives to conduct IBs solubilization and on-column refolding have been proposed in recent years. However, rarely these on-column refolding alternatives have been evaluated from an economical point of view, questioning the feasibility of their implementation at a preparative scale. The presented study assesses the economic performance of four distinct process alternatives that include pH induced IBs solubilization and protein refolding (pH_IndSR); IBs solubilization using urea, dithiothreitol (DTT), and alkaline pH followed by batch size-exclusion protein refolding; inclusion bodies (IBs) solubilization using urea, DTT, and alkaline pH followed by simulated moving bed (SMB) size-exclusion protein refolding, and IBs solubilization using urea, DTT and alkaline pH followed by batch dilution protein refolding. The economic performance was judged on the basis of the direct fixed capital, and the production cost per unit of product (P(C)). This work shows that (1) pH_IndSR system is a relatively economical process, because of the low IBs solubilization cost; (2) substituting β-mercaptoethanol for dithiothreithol is an attractive alternative, as it significantly decreases the product cost contribution from the IBs solubilization; and (3) protein refolding by size-exclusion chromatography becomes economically attractive by changing the mode of operation of the chromatographic reactor from batch to continuous using SMB technology.  相似文献   

15.

Background  

Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP) with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes.  相似文献   

16.

Background

Proteins in inclusion bodies (IBs) present native-like secondary structures. However, chaotropic agents at denaturing concentrations, which are widely used for IB solubilization and subsequent refolding, unfold these secondary structures. Removal of the chaotropes frequently causes reaggregation and poor recovery of bioactive proteins. High hydrostatic pressure (HHP) and alkaline pH are two conditions that, in the presence of low level of chaotropes, have been described as non-denaturing solubilization agents. In the present study we evaluated the strategy of combination of HHP and alkaline pH on the solubilization of IB using as a model an antigenic form of the zika virus (ZIKV) non-structural 1 (NS1) protein.

Results

Pressure-treatment (2.4?kbar) of NS1-IBs at a pH of 11.0 induced a low degree of NS1 unfolding and led to solubilization of the IBs, mainly into monomers. After dialysis at pH?8.5, NS1 was refolded and formed soluble oligomers. High (up to 68?mg/liter) NS1 concentrations were obtained by solubilization of NS1-IBs at pH?11 in the presence of arginine (Arg) with a final yield of approximately 80% of total protein content. The process proved to be efficient, quick and did not require further purification steps. Refolded NS1 preserved biological features regarding reactivity with antigen-specific antibodies, including sera of ZIKV-infected patients. The method resulted in an increase of approximately 30-fold over conventional IB solubilization-refolding methods.

Conclusions

The present results represent an innovative non-denaturing protein refolding process by means of the concomitant use of HHP and alkaline pH. Application of the reported method allowed the recovery of ZIKV NS1 at a condition that maintained the antigenic properties of the protein.
  相似文献   

17.

Background  

Many enzymes of industrial interest are not in the market since they are bio-produced as bacterial inclusion bodies, believed to be biologically inert aggregates of insoluble protein.  相似文献   

18.
Pseudomonas aeruginosa as an opportunistic pathogen causes lethal infections in immunocompromised individuals. This bacterium possesses a polar flagellum made up of flagellin subunits. Flagella have important roles in motility, chemotaxis, and establishment of P. aeruginosa in acute phase of infections. Isolation, cloning, and expression of flagellin were aimed at in this study. Flagellin gene (fliC) of P. aeruginosa strain 8821M was isolated by PCR and cloned into a pET expression vector. The recombinant flagellin (46 kDa) was overexpressed as inclusion bodies (IBs). IBs were solubilized in guanidine hydrochloride (GuHCl) followed by affinity-purification and renatured using Ni2+-Sepharose resin. Recombinant flagellins reacted with the serum from a rabbit previously immunized with native flagellin. In addition, polyclonal antiserum raised against the recombinant flagellin was shown to significantly inhibit the cell motility of P. aeruginosa strain 8821M in vitro.  相似文献   

19.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) belongs to the TNF cytokine superfamily that specifically induces apoptosis in a broad spectrum of human cancer cell lines but not in most healthy cells. The antitumor potential of recombinant human TRAIL (rhTRAIL) has attracted great attention among biologists and oncologists. However, attempts to express rhTRAIL in Escherichia coli often results in limited yield of bioactive protein due to the formation of inclusion bodies (IBs), which are dense insoluble particulate protein aggregates inside cells. We describe herein a highly simplified method to produce pure bioactive rhTRAIL using E. coli. The method is straightforward and requires only basic laboratory equipment, with highly efficient purification and high yield of renaturation, and may also be applied to produce other proteins that form IBs in E. coli.  相似文献   

20.

Objectives

To optimize the production of active inclusion bodies (IBs) containing human d-amino acid oxidase (hDAAO) in Escherichia coli.

Results

The optimized initial codon region combined with the coexpressed rare tRNAs, fusion of each of the N-terminal partners including cellulose-binding module, thioredoxin, glutathione S-transferase and expressivity tag, deletion of the incorporated linker, and improvement of tRNA abundance affected the production and activity for oxidizing d-alanine of the hDAAO in IBs. Compared with the optimized fusion constructs and expression host, IBs yields and activity were increased to 2.6- and 2.8-fold respectively by changing the N-terminal codon bias of the hDAAO. The insoluble hDAAO codon variant displayed the same substrate specificity as the soluble one for oxidizing d-alanine, d-serine and d-aspartic acid. The freshly prepared hDAAO codon variant was used for analyzing the l-serine racemization activity of the bacterially expressed maize serine racemase.

Conclusions

Optimization of the N-terminal codon bias combined with the coexpression of rare tRNAs is a novel and efficient approach to produce active IBs of the hDAAO.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号