首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipids extracted from doxorubicin-resistant murine leukemia cells (P388/ADR) contained greater relative amounts of myristic and palmitoleic acids than lipids from sensitive cells (P388). This was seen in both the phospholipid and neutral lipid fractions under two nutritional conditions. Correspondingly in P388/ADR cells, myristic acid comprised a greater proportion of the products of the fatty acid synthetase system, and acyl-CoA 9-desaturase activity was transiently greater than in P388. Similar alterations in myristic acid synthesis were exhibited by DC3F/AD X, N417/VP-16, and P388/AZQ30U cells but not by CHRC5 or HL60/AR cells. This alterations was independent of alterations in the P180 glycoprotein and might be linked via the myristoylation of proteins to a different mechanism of drug resistance. Doxorubicin-resistant P388/ADR cells also exhibited a much higher rate of oxidative energy production.  相似文献   

2.
A novel class of molecules with structure N-[3-(4-substituted-1-piperazinyl) propyl]-6-methoxy naphthalene-2-carboxamides were designed by generating a pharmacophore for potent MDR reversal activity, using Elacridar (GF 120918) as a query molecule and using MOE software. They were synthesized by condensing 6-methoxynaphthalene-2-carboxylic acid with N-[3-(4-substituted-1-piperazinyl) propyl] amines in the presence of DCC in DMF. They were evaluated in P388 murine lymphocytic leukemia cell line (P388) in vitro using SRB assay for cytotoxicity and in adriamycin-resistant P388 murine lymphocytic leukemia cell line (P388/ADR) using MTT assay for resistant reversal activity. Test compounds were non-toxic at the doses studied (upto 80 microg/ml). They effectively reversed adriamycin resistance at the doses studied (40 and 80 microg/ml). The percentage enhancement in adriamycin activity was in the range 33.58 -90.67 (at 40 microg/ml) and 8.80-46.04 (at 80 microg/ml) and the corresponding reversal potency values were in the range 1.33-1.90 and 1.08-1.46, respectively. Test compounds 2, 3, and 5 exhibited better activity as compared to the standard resistant reversal agent (Verapamil), at same concentration.  相似文献   

3.
We have studied by uridine short term test the level of resistance of murine leukemia cell lines P 388/Dx and ELD/Dx carcinoma cells with induced resistance to doxorubicin, P 388/Fp + Dx cells with induced resistance to combination of finoptOFF++ and doxorubicin in vivo. It was shown that the level of resistance was 6 fold for P 388/Dx cells, 4.5 fold for ELD/Dx cells and 2 fold for P 388/Fp + Dx cells. It was shown that the P 388/Dx cells and P 388/Fr + Dx cells had a 3.5 and 4.4 fold increase level of glutathione-S-transferase activity than P 388 cells. No increase in the activity of glutathione-S-transferase was detected in ELD/Dx cells. We conclude that increase of cellular glutathione-S-transferase activity is not associated with the development of resistance to doxorubicin.  相似文献   

4.
The P388 lymphocytic leukemia and the L1210 lymphoid leukemia are used as test systems for putative cytotoxic drugs. These leukemias are also used to investigate the perturbation of cell cycle progression of various chemical compounds in more detail. There is little information on the normal growth kinetics in vivo of these leukemias. In the present report we therefore present the results from growth kinetic studies of P388 and L1210 leukemic cells growing in ascites form in mice. We used 3H-TdR autoradiography, DNA flow cytometry and the stathmokinetic method. During exponential growth both leukemias showed a growth fraction of unity. Whereas no significant cell loss was observed during the early growth phase of P388 cells, cell loss was indicated by a discrepancy between potential and actual doubling times during exponential growth of L1210 cells. During the phase of growth retardation, the proportion of G1 and G2 cells increased at the expence of a reduced S phase fraction in the P388 leukemia, whereas only small changes in cell cycle distributions were seen with time after inoculation of L1210 cells. An increasing discrepancy in the reduction of the S phase fraction and the 3H-TdRLI was seen in the P388 cells with time after inoculation. Thus, a majority of P388 cells with S phase DNA content were unlabelled during the late phase of growth restriction, indicating resting cells in S phase. A good correlation was found between the 3H-TdR LI and S phase fraction throughout the life history of L1210 cells, revealing considerable differences in in vivo growth kinetics between the two leukemias. Such differences should be considered when evaluating test results.  相似文献   

5.
A murine P388 leukemia line fully resistant to thiarabine was obtained after five courses of intraperitoneal treatment (daily for nine consecutive days). The subline was sensitive as was the parental P388/0 line to 5-fluorouracil, gemcitabine, cyclophosphamide, cisplatin, melphalan, BCNU, mitomycin C, doxorubicin, mitoxantrone, etoposide, irinotecan, vincristine, and paclitaxel, but was cross resistant (at least marginally) to three antimetabolites: palmO-ara-C, fludarabine phosphate, and methotrexate. The deoxycytidine kinase activity in the subline was comparable to that for P388/0, whereas the dCMP deaminase activity was 43% of that for P388/0. No deoxycytidine deaminase activity was detected in either of the leukemias. There appeared to be little, if any, difference in the metabolism of deoxycytidine, cytidine, or thiarabine in the two leukemias.  相似文献   

6.
Levels of mixed-function oxidase (MFO) enzymes were measured in adriamycin(ADR)-sensitive murine leukemia P-388 and its ADR-resistant subline P-388/ADR. The subcellular fractions of the resistant cells showed decreased contents of MFO components, cytochrome P-450 and cytochrome b5, in comparison with the identically prepared fractions of the parental tumor. Similarly, the levels of 7-ethoxycoumarin O-deethylase and the rate of ascorbate induced lipid peroxidation in vitro showed lower values in resistant tumor cells than those of P-388 tumor cells. The observed differences in the two tumor cell types were found to be considerably enhanced if the tumor cells were exposed in vitro to ADR before fractionation. The magnitude of induction of the MFO enzymes was significantly greater in the ADR exposed P-388 cells. The corresponding inducibility was suppressed in the drug exposed resistant tumor cells.  相似文献   

7.
The synthesis and the in vivo evaluation against leukemias P388 and L1210 of six new alkylating steroidal esters are described. The esteric derivatives incorporating the 17β-acetamido-B-lactamic steroidal skeleton exhibited increased antileukemic activity and lower toxicity, compared to the 17β-acetamido-7-keto analogs. Among the 17β-acetamido-B-lactamic steroidal esters, the most potent compound afforded four out of six cures in leukemia P388 and was measured to be almost non-toxic, producing significant low levels of toxicity.  相似文献   

8.
9.
To improve the ability of flow cytometry to detect multidrug-resistant cells, we studied the extent to which cell volume heterogeneity accounts for the variance of intracellular daunorubicin (DNR) content. For P388 murine or HL-60 human leukemia cells exposed to DNR (1 micrograms/ml, 60 min), log intracellular DNR content varied in direct proportion to log cell volume measured by flow cytometry, with a correlation coefficient of .9. This relationship was confirmed by cell sorting based on intracellular DNR content with subsequent volume determination of the sorted cells. Normalization of intracellular DNR content for cell volume (thus obtaining intracellular DNR concentration) was accomplished by subtracting log cell volume from log intracellular DNR content for each cell. This resulted in a 34% decrease (range 23-58%) in standard deviation compared to DNR content measurements without volume normalization for all cell types tested. Following exposure to DNR (as above), intracellular DNR content of drug-sensitive P388 or HL-60 cells measured by flow cytometry was 12- and 8-fold greater than that of the multidrug-resistant sublines P388/ADR and HL-60/AR, respectively. However, because of the variance of intracellular DNR content, the predictive value of flow-cytometric determination of intracellular DNR content as a discriminant assay for detecting the frequency of drug-resistant cells in a mixed population was acceptable only when the frequency of resistant cells in the population exceeded 10%. In contrast, volume normalization of intracellular DNR content enhanced the ability of the flow-cytometric assay to discriminate resistant cells by 10-fold for P388 cells and 100-fold for HL-60 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A series of anthrapyridazone derivatives with one or two basic side chains at various positions in the tetracyclic chromophore have been synthesized. The key intermediates in the synthesis are 2,7-dihydro-3H-dibenzo[de,h]cinnoline-3,7-diones 1, 12 and 15 monosubstituted at position 2 (4d, 16a-e), or 6 (2a-f) or disubstituted at positions 2 and 6 (4a-c) or 2 and 8 (17a-e) with appropriate alkylaminoalkylamines. All analogues showed in vitro cytotoxic activity against murine leukemia (L1210) and human leukemia (K562) cell lines. The compounds were also active against human leukemia multidrug resistant (K562/DX) cell line with resistance index (RI) in the range 1-3 depending on the compound's structure. Two of the most active in vitro compounds 4a and 11 were tested in vivo against murine P388 leukemia and displayed antileukemic activity comparable with that of Mitoxantrone. DNA-binding assays were performed and DNA affinity data were correlated with the structures of the compounds. The cytoplasmatic membrane affinity values (log k'(IAM)) have also been determined and the correlation with the resistance indexes discussed. The anthrapyridazones constitute a novel group of antitumor compounds that can overcome multidrug resistance.  相似文献   

11.
目的研究N-糖基化修饰、糖基因表达调控在髓性白血病耐药中的作用,明确N-糖基化修饰、糖基因与白血病耐药的相关性,从而为预测和诊断髓性白血病耐药性,寻求逆转药物提供新策略和靶点。方法通过修饰白血病耐药细胞株的N-糖基化(衣霉素Tunicamycin和PNGase F处理),Western Blot检测Pgp、CD147糖蛋白的表达水平;MTT法检测N-糖基化修饰前后髓性白血病耐药细胞株的生长情况及对化疗药物的敏感性,观察上述细胞膜型N-糖基化修饰后对化疗药物耐药性的影响;进一步通过RNA干扰技术干预差异表达的糖基因,MTT法检测干扰前后白血病耐药细胞株的生长情况及对化疗药物的敏感性,观测糖基因的表达调控对髓性白血病耐药的影响。结果 NB4/ADR细胞经N-糖基化修饰后,P-gp、CD147糖蛋白的表达水平发生改变,同时该细胞的药物敏感性也增强(P〈0.05);当通过RNA干扰技术特异性使NB4/ADR细胞中B3GNT8和ST8SIA4表达下调时,该细胞的药物敏感性增强(P〈0.05)。结论髓性白血病细胞株中N-糖基化修饰、糖基因的改变均与白血病多药耐药具有相关性,为预测和诊断髓性白血病耐药性,寻求逆转药物提供新策略和靶点。  相似文献   

12.
Correlations of disease phenotypes with glycosylation changes have been analyzed intensively in tumor biology field. In this study we describe glycomic alterations of multidrug resistance in human leukemia cell lines. Using multiple glycan profiling tools: real-time PCR for quantification of glycogenes, FITC-lectin binding for glycan profiling, and mass spectrometry for glycan composition, we compared the glycomics of drug-resistant K562/ADR cells with parental K562 line. The results showed that the expression of glycogenes, glycan profiling and N-glycan composition were different in K562/ADR cells, as compared with those in K562 cells, whereas O-glycans of the two cell lines showed no different mass spectra. Further analysis of the N-glycan regulation by way of tunicamycin application or PNGase F treatment in K562/ADR cells showed partial inhibition of biosynthesis and increased sensitivity to chemotherapeutic drugs in vitro. We targeted glycogene B3GNT8 and ST8SIA4, which were over-expressed in K562/ADR cells, and silenced the expression levels of two glycogenes after using RNA interference approach. The results showed that the silencing of B3GNT8 or ST8SIA4 in K562/ADR cells resulted in increased chemosensitivity to anti-tumor drugs. In conclusion, glycomic alterations are responsible for the overcoming multidrug resistance in human leukemia therapy and the N-linked oligosaccharides are associated with the drug resistance of cancer cells.  相似文献   

13.
The present study was undertaken to determine whether murine macrophage cell lines exhibited in vitro amoebicidal activity comparable to that elicited by activated murine peritoneal macrophages. Peritoneal macrophages activated in vivo by bacillus Calmette-Guérin or Propionibacterium acnes demonstrated significant cytolysis of Naegleria fowleri amoebae. The macrophage cell line RAW264.7 also effected cytolysis of amoebae, but to a lesser extent than that elicited by activated peritoneal macrophages. However, the macrophage cell lines, J774A.1 and P388D1, did not exhibit amoebicidal activity. Macrophage conditioned medium prepared from RAW264.7 macrophages mediated cytolysis of L929 tumor cells but had no effect on N. fowleri amoebae. In addition, neither recombinant tumor necrosis factor nor recombinant interleukin-1 exhibited amoebicidal activity. Scanning electron microscopy of co-cultures revealed that N. fowleri bound to activated peritoneal macrophages and RAW264.7 macrophages. These results suggest that RAW264.7 macrophages treated in vitro with lipopolysaccharide are similar to macrophages activated in vivo in that they effect contact-dependent cytolysis of Naegleria fowleri amoebae. The RAW264.7 macrophages are unlike primary macrophage cultures in that they either do not release soluble amoebicidal factors into the conditioned medium or they release insufficient quantities.  相似文献   

14.
Harringtonine showed cross resistance in adriamycin-resistant murine leukemia P388 (P388/ADM) and human leukemia K562 (K562/ADM) cells. The relative resistance of the P388/ADM and K562/ADM cells to harringtonine was about 7 and 40, respectively. Calcium influx blockers, diltiazem and the biscoclaurine alkaloid cepharanthine enhanced the cytotoxicity of harringtonine in P388/ADM and K562/ADM cells. The extent of enhancement was different for the two drugs, and up to a 9- to 10-fold increase in harringtonine cytotoxicity occurred in P388/ADM cells, and 14- to 22-fold enhancement in K562/ADM cells with diltiazem or cepharanthine. Harringtonine resistance of P388/ADM was circumvented completely, and the resistance of K562/ADM was circumvented partially, by diltiazem or cepharanthine. The mechanism of enhanced cytotoxicity by diltiazem and cepharanthine is probably inhibition of active efflux of harringtonine in P388/ADM and K562/ADM cells.  相似文献   

15.
To investigate reversal effects of pantoprazole (PPZ) on multidrug resistance (MDR) in human gastric adenocarcinoma cells in vivo and in vitro. Human gastric adenocarcinoma cell SGC7901 was cultured in RPMI‐1640 medium supplemented with 10% fetal bovine serum and antibiotics in a humidified 5% CO2 atmosphere at 37°C. Adriamycin (ADR)‐resistant cells were cultured with addition of 0.8 µg/ml of ADR maintaining MDR phenotype. ADR was used to calculate ADR releasing index; CCK‐8 Assay was performed to evaluate the cytotoxicity of anti‐tumor drugs; BCECF‐AM pH‐sensitive fluorescent probe was used to measure intracellular pH (pHi) value of cells, whereas pH value of medium was considered as extracellular pH (pHe) value; Western blotting and immunofluorescent staining analyses were employed to determine protein expressions and intracellular distributions of vacuolar H+‐ATPases (V‐ATPases), mTOR, HIF‐1α, P‐glycoprotein (P‐gp), and multidrug resistant protein 1 (MRP1); SGC7901 and SGC7901/ADR cells were inoculated in athymic nude mice. Thereafter, effects of ADR with or without PPZ pretreatment were compared by determining the tumor size and weight, apoptotic cells in tumor tissues were detected by TUNEL assay. At concentrations greater than 20 µg/ml, PPZ pretreatment reduced ADR releasing index and significantly enhanced intracellular ADR concentration of SGC7901 (P < 0.01). Similarly, PPZ pretreatment significantly decreased ADR releasing index of SGC7901/ADR dose‐dependently (P < 0.01). PPZ pretreatment also decreased cell viabilities of SGG7901 and SGC7901/ADR dose‐dependently. After 24‐h PPZ pretreatment, administration of chemotherapeutic agents demonstrated maximal cytotoxic effects on SGC7901 and SGC7901/ADR cells (P < 0.05). The resistance index in PPZ pretreatment group was significantly lower than that in non‐PPZ pretreatment group (3.71 vs. 14.80). PPZ at concentration >10 µg/ml significantly decreased pHi in SGC7901 and SGC7901/ADR cells and diminished or reversed transmembrane pH gradient (P < 0.05). PPZ pretreatment also significantly inhibited protein expressions of V‐ATPases, mTOR, HIF‐1α, P‐gp, and MRP1, and alter intracellular expressions in parent and ADR‐resistant cells (P < 0.05). In vivo experiments further confirmed that PPZ pretreatment could enhance anti‐tumor effects of ADR on xenografted tumor of nude mice and also improve the apoptotic index in xenografted tumor tissues. PPZ pretreatment enhances the cytotoxic effects of anti‐tumor drugs on SGC7901 and reverse MDR of SGC7901/ADR by downregulating the V‐ATPases/mTOR/HIF‐1α/P‐gp and MRP1 signaling pathway. J. Cell. Biochem. 113: 2474–2487, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
Synthesis of adenine derivative of triphosphono-gamma-(Z)-ethylidene-2,3-dimethoxybutenolide 4 was accomplished by treatment of phosphonate 3 with 5-phosphoribosyl 1-pyrophosphate in the presence of 5-phosphoribosyl 1-pyrophosphate synthetase. It was found that triphosphonate 4 functions as an irreversible stoichiometric inactivator of the Escherichia coli ribonucleoside diphosphate reductase (RDPR). Triphosphonate 4 exhibited potent inhibitory activity against murine leukemias (L1210 and P388), breast carcinoma (MCF7), and human T-lymphoblasts (Molt4/C8 and CEM/0) cell lines. Paclitaxel ester derivatives of adenine-containing triphosphono-gamma-(Z)-ethylidene-2,3-dimethoxybutenolide 8-10 were also synthesized. Like triphosphonate 4, compound 8 exhibited inhibitory property toward RDPR. It also induced microtubule assembly similar to paclitaxel (5). The structure of the chlorodiester linker in 8 was found to account for this dual property. After treatment of MCF7 cells with compounds 4, 5, and 8, fluorescence microscope examination demonstrated the presence of nucleus shrinkage or segmentation. Bifunctional prodrug 8 exhibited higher lipophilicity than 4 and higher water-solubility than 5. Pro-dual-drug 8 exhibited more pronounced anticancer activity relative to that of the triphosphonate 4 and paclitaxel (5). In contrast, compound 9, resulting from the linkage of triphosphonate 4 and paclitaxel (5) through a diester unit, was only found to function as a highly water-soluble prodrug for paclitaxel (5). It induced microtubule assembly in vitro, but did not show inhibitory property toward RDPR. On the other hand, compound 10, an aggregate of triphosphonate 4 and paclitaxel (5), neither functioned as an inhibitor of RDPR nor exhibited microtubule assembly stimulating activity in vitro.  相似文献   

18.
Using male mice BDF1, it has been shown that the retention period of doxorubicin (DOX) is shorter in the leukemia P 388 cells with induced antibiotic resistance (P 388/DOX) as compared to the P 388 cells, sensitive to DOX. Administration of finoptin (FP) to animals leads to the increase of DOX concentration in the leukemia P 388/DOX cells during 240 min observation. FP promotes the therapeutic effect of DOX on mice bearing leukemia P 388/DOX. It can be suggested that the mechanism of FP action is the damaged DOX elimination from cells with induced resistance, since FP doesn't change the period of antibiotic circulation in the murine blood plasma.  相似文献   

19.
The genotoxic potential of the natural neurotoxin Tetrodotoxin (TTX) was evaluated in a battery of in vitro and in vivo genotoxicity assays. These comprised a bacterial reverse-mutation assay (Ames test), an in vitro human lymphocyte chromosome-aberration assay, an in vivo mouse bone-marrow micronucleus assay and an in vivo rat-liver UDS assay. Maximum test concentrations in in vitro assays were determined by the TTX limit of solubility in the formulation vehicle (0.02% acetic acid solution). In the Ames test, TTX was tested at concentrations of up to 200 microg/plate. In the chromosome-aberration assay human lymphocytes were exposed to TTX at concentrations of up to 50 microg/ml for 3 and 20 h in the absence of S9, and for 3h in the presence of S9. For the in vivo assays, maximum tested dose levels were determined by the acute lethal toxicity of TTX after subcutaneous administration. In the mouse micronucleus assay TTX dose levels of 2, 4 and 8 microg/kg were administered to male and female animals, and bone-marrow samples taken 24 and 48 h (high-dose animals only) after administration. In the UDS assay, male rats were given TTX on two occasions with a 14-h interval at dose levels of 2.4 and 8 microg/kg, the last dose being administered 2h before liver perfusion and hepatocyte culturing. Relevant vehicle and positive control cultures and animals were included in all assays. TTX was clearly shown to lack in vitro or in vivo genotoxic activity in the assays conducted in this study. The results suggest that administration of TTX as a therapeutic analgesic agent would not pose a genotoxic risk to patients.  相似文献   

20.
The present study was undertaken to determine whether murine macrophage cell lines exhibited in vitro amoebicidal activity comparable to that elicited by activated murine peritoneal macrophages. Peritoneal macrophages activated in vivo by bacillus Calmette-Guérin or Propionibacterium acnes demonstrated significant cytolysis of Naegleria fowleri amoebae. The macrophage cell line RAW264.7 also effected cytolysis of amoebae, but to a lesser extent than that elicited by activated peritoneal macrophages. However, the macrophage cell lines, J774A.1 and P388D1, did not exhibit amoebicidal activity. Macrophage conditioned medium prepared from RAW264.7 macrophages mediated cytolysis of L929 tumor cells but had no effect on N. fowleri amoebae. In addition, neither recombinant tumor necrosis factor nor recombinant interleukin-1 exhibited amoebicidal activity. Scanning electron microscopy of co-cultures revealed that N. fowler bound to activated peritoneal macrophages and RAW264.7 macrophages. These results suggest that RAW264.7 macrophages treated in vitro with lipopolysaccharide are similar to macrophages activated in vivo in that they effect contact-dependent cytolysis of Naegleria fowleri amoebae. The RAW264.7 macrophages are unlike primary macrophage cultures in that they either do not release soluble amoebicidal factors into the conditioned medium or they release insufficient quantities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号