首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we have established that a highly reactive cysteinyl group on the alpha subunit is at the aldehyde site of the (alpha beta) dimeric Vibrio harveyi luciferase. Three isomeric bifunctional reagents have been synthesized and used to further delineate the luciferase aldehyde site. These probes differ in their relative positions of and distances between the two functional groups active in chemical and photochemical labelings, respectively. Each of the probes can effectively and reversibly inactivate luciferase by forming a disulfide linkage primarily to the reactive cysteinyl residue. Upon subsequent photolysis, a diazoacetate arm in each probe was activated for photochemical labeling of amino acid residues within reach. After reductive regeneration of the reactive cysteinyl residue, 0.35-0.40 probe per dimeric luciferase was found to have been photochemically incorporated, correlating well with the degree of irreversible enzyme inactivation. Low but significant amounts of the three isomeric probes initially attached to the alpha reactive cysteine through a disulfide have been found to photochemically tag certain residues on beta. The latter residues are estimated to be no more than 8-11 A away from the alpha reactive cysteine. Thus the reactive cysteinyl residue, and hence the aldehyde site, must be at or near the alpha beta subunit interface. Furthermore, the structural integrity of the microenvironment surrounding this reactive cysteinyl residue is crucial to luciferase activity. An HPLC method for the isolation of luciferase alpha and beta subunits has also been developed.  相似文献   

2.
The tryptophan synthase alpha 2 beta 2 complex catalyzes tryptophan (Trp) biosynthesis from serine plus either indole (IN) or indole-3-glycerol phosphate (InGP). The photoreactive 5-azido analog in IN (AzIN), itself a substrate in the dark, was utilized to examine the substrate binding sites on this enzyme. When irradiated with AzIN at concentrations approaching IN saturation for the IN----Trp activity (0.1 mM), in the absence of serine, the enzyme was increasingly inactivated (up to 70-80%) concomitant with the progressive binding of a net of 2 mol AzIN per alpha beta equivalent. Little or no cooperativity in the binding of the 2 mol AzIN was observed. In contrast, there was minimal effect on the IN----InGP activity. Under these conditions AzIN appeared to be incorporated equally into each subunit. No significant inactivation nor binding occurred in the presence of serine. A quantitatively similar inactivation of InGP----Trp activity was observed over the same AzIN concentration range, suggesting common IN sites for Trp biosynthesis from either indole substrate. At higher concentrations (0.1-0.7 mM), no further inactivation occurred, although there was extensive additional binding (up to 10 mol/alpha beta equivalent). These data are consistent, although more clear-cut quantitatively, with the high- and low-affinity sites proposed from equilibrium dialysis studies. AzIN binding studies utilizing the isolated beta 2 subunit confirmed earlier reports suggesting the existence of many nonspecific IN binding sites on this subunit.  相似文献   

3.
The synthesis and properties of a radiolabeled glycoside photoaffinity probe, [3H]-(3 beta,5 beta,14 beta, 20E)-24-azido-3-[(2,6-dideoxy-beta-D-ribo-hexopyranosyl) oxy]-14-hydroxy-21-norchol-20(22)-en-23-one, containing the photoactive group at the C-17 side chain of the steroid moiety are reported. The molecule binds to the sodium- and potassium-activated adenosinetriphosphatase from porcine kidney outer medulla under type II binding conditions [5 mM MgCl2, 3 mM phosphate, 2 mM ethylenediaminetetraacetic acid, 30 mM tris(hydroxymethyl)aminomethane, pH 7.2, 37 degrees C] in the dark with an equilibrium dissociation constant of (1.4 +/- 0.3) X 10(-7) M. Ultraviolet irradiation of a solution of enzyme plus 3H-labeled probe, followed by analysis of covalently incorporated radiolabel, shows ouabain-displaceable labeling exclusively of the alpha subunit of the sodium- and potassium-activated adenosinetriphosphatase. These data indicate that the binding site of the C-17 side group of cardiac glycosides is located on or near the alpha subunit of this enzyme.  相似文献   

4.
J M Sparks  T O Baldwin 《Biochemistry》2001,40(50):15436-15443
Bacterial luciferase catalyzes the conversion of FMNH(2), a long-chain aliphatic aldehyde, and molecular oxygen to FMN, the corresponding carboxylic acid, and H(2)O with the emission of light. The light-emitting species is an enzyme-bound excited state flavin. The enzyme is a heterodimer (alphabeta) of homologous subunits each with an (beta/alpha)(8) barrel structure. A portion of the loop in the alpha subunit that connects beta strand 7 to alpha helix 7 is disordered in the crystal structure. To test the hypothesis that this loop closes over the active site during catalysis and protects the active site from bulk solvent, a mutant was constructed in which the 29 residues that are disordered in the 2.4 A crystal structure were deleted. Deletion of this loop results in a heterodimer with a subunit equilibrium dissociation constant of 1.32 +/- 1.25 microM, whereas the wild-type heterodimer shows no measurable subunit dissociation. This mutant retains its ability to bind substrate flavin and aldehyde with wild-type affinity and can carry out the chemistry of the bioluminescence reaction with nearly wild-type efficiency. However, the bioluminescent quantum yield of the reaction is reduced nearly 2 orders of magnitude from that of the wild-type enzyme.  相似文献   

5.
A de Waal  L de Jong  A F Hartog  A Kemp 《Biochemistry》1985,24(23):6493-6499
The synthesis is described of the photoaffinity label N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5 for the peptide binding site of prolyl 4-hydroxylase. The photoaffinity label is a good substrate and is capable of light-induced inactivation of prolyl 4-hydroxylase activity. Inactivation depends on the concentration of photoaffinity label and is prevented by competition with excess (Pro-Pro-Gly)5. Two moles of photoaffinity label per mole of enzyme is needed for 100% inactivation of enzymic activity. Oxidative decarboxylation of 2-oxoglutarate measured in the absence of added peptide substrate is not affected by labeling. We conclude that the covalently bound nitreno derivative of N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5 acts by preventing the binding of peptide substrate to the catalytic site without interfering with the binding of the other substrates and cofactors 2-oxoglutarate, O2, Fe2+, and ascorbate. Labeling is specific for the alpha subunit of the tetrameric alpha 2 beta 2 enzyme. In addition to two catalytic binding sites that are blocked by the photoaffinity label, the enzyme contains binding subsites for peptide substrates, as judged from the capability of photoinactivated enzyme to bind to a poly(L-proline) affinity column. These binding subsites may account for the rapidly increasing affinity for peptide substrates with increasing chain length.  相似文献   

6.
E Amler  A Abbott    W J Ball  Jr 《Biophysical journal》1992,61(2):553-568
The oligomeric nature of the purified lamb kidney Na+,K(+)-ATPase was investigated by measuring the fluorescence energy transfer between catalytic (alpha) subunits following sequential labeling with fluorescein 5'-isothiocyanate (FITC) and erythrosin 5'-isothiocyanate (ErITC). Although these two probes had different spectral responses upon reaction with the enzyme, our studies suggest that a sizeable proportion of their binding occurs at the same ATP protectable, active site domain of alpha. Fluorescence energy transfer (FET) from donor (FITC) to acceptor (ErITC) revealed an apparent 56 A distance between the putative ATP binding sites of alpha subunits, which is consistent with (alpha beta)2 dimers rather than randomly spaced alpha beta heteromonomers. In this work, methods were introduced to eliminate the contribution of nonspecific probe labeling to FET values and to determine the most probable orientation factor (K2) for these rigidly bound fluorophores. FET measurements between anthroylouabain/ErITC, 5'-iodoacetamide fluorescein (5'IAF)/ErITC, and TNP-ATP/FITC, donor/acceptor pairs were also made. Interestingly, none of these distances were affected by ligand-dependent changes in enzyme conformation. These results and those from electron microscopy imaging (Ting-Beall et al. 1990. FEBS Lett. 265:121) suggest a model in which ATP binding sites of (alpha beta)2 dimers are 56 A apart, and reside 30 A from the intracellular surface of the membrane contiguous with the phosphorylation domain.  相似文献   

7.
L H Chen  T O Baldwin 《Biochemistry》1989,28(6):2684-2689
Numerous luciferase structural gene mutants of Vibrio harveyi have been generated by random mutagenesis and phenotypically characterized [Cline, T.W., & Hastings, J.W. (1972) Biochemistry 11, 3359-3370]. All mutants selected by Cline and Hastings for altered kinetics in the bioluminescence reaction had lesions in the alpha subunit. One of these mutants, AK-20, has normal or slightly enhanced thermal stability and enhanced FMNH2 binding affinity but a much-reduced quantum yield of bioluminescence and dramatically altered stability of the aldehyde-C4a-peroxydihydroflavin-luciferase intermediate (IIA), with a different aldehyde chain length dependence from that of the wild-type luciferase. To better understand the structural aspects of the aldehyde binding site in bacterial luciferase, we have cloned the luxAB genes from the V. harveyi mutant AK-20, determined the nucleotide sequence of the entire luxA gene, and determined the mutation to be TCT----TTT, resulting in a change of serine----phenylalanine at position 227 of the alpha subunit. To confirm that this alteration caused the altered kinetic properties of AK-20, we reverted the AK-20 luxA gene by oligonucleotide-directed site-specific mutagenesis to the wild-type sequence and found that the resulting enzyme is indistinguishable from the wild-type luciferase with respect to quantum yield, FMNH2 binding affinity, and intermediate IIA decay rates with 1-octanal, 1-decanal, and 1-dodecanal. To investigate the cause of the AK-20 phenotype, i.e., whether the phenotype is due to loss of the seryl residue or to the properties of the phenylalanyl residue, we have constructed mutants with alanine, tyrosine, and tryptophan at alpha 227.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Immobilized luciferase was studied with regard to its reactivity and subunit functions. When immobilized on a matrix (Sepharose 6B), neither the alpha nor the beta subunit alone exhibited luciferase activity. However, for both subunits (so attached), denaturation followed by renaturation in the presence of the second subunit resulted in the recovery of activity on the matrix. It was thus confirmed that both of the two different subunits (alpha and beta) are required for luciferase activity, even after immobilization. Recovery of activity was approximately the same or slightly less with alpha-immobilized luciferase compared with the beta-immobilized enzyme under our experimental conditions. Generally, immobilized luciferase exhibited both a lower FMNH2 binding affinity and maximum light emission activity in comparison with free native luciferase, but surprisingly, it exhibited no change in the rate constant for the luminescence, this being a measure of the catalytic turnover time. The alpha-subunit-immobilized (renatured with beta) luciferase possessed a lower FMNH2 binding affinity compared with beta-subunit-immobilized (renatured with alpha) luciferase. Since the protein attachment to the CNBr-activated Sepharose 6B occurs by way of an amino group of luciferase, it was suggested that the binding of FMNH2 on luciferase, but not the subsequent catalytic steps, is dependent upon some exposed amino groups on both alpha and beta subunits.  相似文献   

9.
The single sulfhydryl residue (cysteine-63) of the beta subunit of the chloroplast ATP synthase F1 (CF1) was accessible to labeling reagents only after removal of the beta subunit from the enzyme complex. This suggests that cysteine-63 may be located at an interface between the beta and the alpha subunits of CF1, although alternative explanations such as a conformational change in beta brought about by its release from CF1 cannot be ruled out. Cysteine-63 was specifically labeled with [(diethylamino)methylcoumarinyl]-maleimide, and the distance between this site and trinitrophenyl-ADP at the nucleotide binding site on beta was mapped using fluorescence resonance energy transfer. Cysteine-63 is located in a hydrophobic pocket, 42 A away from the nucleotide binding site on beta.  相似文献   

10.
In a new strategy for labeling the active sites of serine proteinases with fluorescence probes (Bock, P. E. (1988) Biochemistry 27, 6633-6639), a thioester peptide chloromethyl ketone inhibitor is incorporated into the enzyme active center and used to produce a unique thiol group which provides a site for selective chemical modification with any one of many thiol-reactive fluorescence probes. This approach was developed to increase the opportunities for identifying fluorescent proteinase derivatives that act as reporters of binding interactions by allowing a large number of derivatives, representing a broad range of probe spectral properties, to be readily prepared. In the studies described here, the specificity of the labeling approach was evaluated quantitatively for the labeling of human alpha and beta/gamma-thrombin with the thioester peptide chloromethyl ketones, N alpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl and N alpha-[(acetylthio)acetyl]-D-Phe-Phe-Arg-CH2Cl, and the thiol-reactive fluorescence probe, 5-(iodoacetamido)fluorescein. Irreversible inactivation of thrombin by the inhibitors was accompanied by incorporation of 0.98 +/- 0.06 mol/mol of the thioester group into the active site, independent of a 470-fold difference between the thioester peptide chloromethyl ketones in the bimolecular rate constants of alpha-thrombin affinity labeling. Subsequent mild treatment of the covalent thrombin-inhibitor complexes with NH2OH in the presence of 5-(iodoacetamido)fluorescein resulted in generation of the thiol group together with its selective modification and incorporation of 0.96 +/- 0.07 mol of probe/mol of active sites. The incorporated label was localized to a 9000 molecular weight region of alpha and beta/gamma-thrombin containing the catalytic-site histidine residue. Evaluation of competing, side reactions showed that they did not significantly compromise the active site specificity of labeling. These results demonstrated equivalent, active-site-selective fluorescence probe labeling of alpha and beta/gamma-thrombin by use of either of the thioester peptide chloromethyl ketones, with a site specificity of greater than or equal to 94%.  相似文献   

11.
E W Miles  R S Phillips 《Biochemistry》1985,24(17):4694-4703
The photoaffinity reagent 6-azido-L-tryptophan was synthesized by chemical methods. It binds reversibly in the dark to the alpha 2 beta 2 complex of tryptophan synthase of Escherichia coli and forms a quinonoid intermediate with enzyme-bound pyridoxal phosphate (lambda max = 476 nm). The absorbance of this chromophore has been used for spectrophotometric titrations to determine the binding of 6-azido-L-tryptophan (the half-saturation value [S]0.5 = 6.3 microM). Photolysis of the quinonoid form of the alpha 2 beta 2 complex results in time-dependent inactivation of the beta 2 subunit but not of the alpha subunit. The extent of photoinactivation is directly proportional to the absorbance at 476 nm of the quinonoid intermediate prior to photolysis. The substrate L-serine is a competitive inhibitor of 6-azido-L-tryptophan binding and photoinactivation. The competitive inhibitors L-tryptophan, D-tryptophan, and oxindolyl-L-alanine also protect against photoinactivation. The results demonstrate that 6-azido-L-tryptophan is a quasi-substrate for the alpha 2 beta 2 complex of tryptophan synthase and that photolysis of the enzyme-quasi-substrate quinonoid intermediate results in photoinactivation. The modified alpha 2 beta 2 complex retains its ability to bind pyridoxal phosphate and to cleave indole-3-glycerol phosphate, a reaction catalyzed by the alpha subunit. 6-Azido-L-tryptophan (side-chain 1,2,3-14C3 labeled) was synthesized enzymatically from 6-azidoindole and uniformly labeled L-[14C]serine by the alpha 2 beta 2 complex of tryptophan synthase on a preparative scale and has been isolated. Incorporation of 14C label from 6-azido-L-[14C]tryptophan is stoichiometric with inactivation. Our finding that most of the incorporated 14C label is bound in an unstable linkage suggests that an active site carboxyl residue is the major site of photoaffinity labeling by 6-azido-L-tryptophan.  相似文献   

12.
Canine renal Na,K-ATPase was treated with ATP dialdehyde, "oxATP" (20 microM), as described by G. Ponzio, B. Rossi, and M. Lazdunski (1983, J. Biol. Chem. 258, 8201-8205). In this system, a by-product, formaldehyde, was the inactivator. We modified the system to minimize such inhibition and to speed up the reaction. oxATP itself inactivated the enzyme at a rate that was slow at first and later speeded up. We fitted a precursor-product model to the data. Labeling with [3H]oxATP indicated about three sites per alpha beta protomer at complete inactivation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the labeled enzyme showed radioactivity in many components, in the alpha and beta subunits and in small molecules at the tracker dye region. ATP (20 mM) prevented all labeling and inactivation. Ponzio et al. concluded that oxATP labels covalently an ATP binding site. Our experiments did not support this conclusion. Ouabain did not affect labeling. Sodium stimulated both inhibition and labeling more than potassium did, indicating a high-affinity ATP binding site, if any. But nucleotide specificity for preventing or producing inhibition did not correspond to nucleotide specificity for binding of ATP to the native enzyme. Blocking the ATP binding center with fluorescein isothiocyanate or fluorosulfonyl benzoyl adenosine had no effect on [3H]oxATP labeling. ATP also prevented [3H]oxATP labeling of bovine serum albumin or of integral-membrane proteins.  相似文献   

13.
Nicotinic acetylcholine (ACh) receptor (nAChR) agonists are potential therapeutic agents for neurological dysfunction. In the present study, the homopentameric mollusk ACh binding protein (AChBP), used as a surrogate for the extracellular ligand-binding domain of the nAChR, was specifically derivatized by the highly potent agonist azidoepibatidine (AzEPI) prepared as a photoaffinity probe and radioligand. One EPI-nitrene photoactivated molecule was incorporated in each subunit interface binding site based on analysis of the intact derivatized protein. Tryptic fragments of the modified AChBP were analyzed by collision-induced dissociation and Edman sequencing of radiolabeled peptides. Each specific EPI-nitrene-modified site involved either Tyr195 of loop C on the principal or (+)-face or Met116 of loop E on the complementary or (-)-face. The two derivatization sites were observed in similar frequency, providing evidence of the reactivity of the azido/nitrene probe substituent and close proximity to both residues. [3H]AzEPI binds to the alpha4beta2 nAChR at a single high-affinity site and photoaffinity-labels only the alpha4 subunit, presumably modifying Tyr225 spatially corresponding to Tyr195 of AChBP. Phe137 of the beta2 nAChR subunit, equivalent to Met116 of AChBP, conceivably lacks sufficient reactivity with the nitrene generated from the probe. The present photoaffinity labeling in a physiologically relevant condition combined with the crystal structure of AChBP allows development of precise structural models for the AzEPI interactions with AChBP and alpha4beta2 nAChR. These findings enabled us to use AChBP as a structural surrogate to define the nAChR agonist site.  相似文献   

14.
The contributions made by the alpha and beta subunits of E. coli glycyl-tRNA synthetase to the recognition of tRNA have been investigated via binding and immunological methods. Using the nitrocellulose filter assay, we have shown that isolated beta subunit, but not the alpha subunit, binds [14C]glycyl-tRNA with an affinity comparable to that of the native enzyme. Further, the data indicate that the beta subunit possesses one binding site for glycyl-tRNA while the native or reconstituted enzyme (alpha 2 beta 2) has two sites. Rabbit antibodies directed at the beta subunit or the holoenzyme inhibit efficiently the ability of the enzyme to aminoacylate tRNA while alpha-subunit antibodies have a smaller effect. Since none of the antisera have an appreciable effect on the ATP-PPi exchange activity of the enzyme under these conditions, the beta-subunit (and holoenzyme) antisera evidently interfere with productive tRNA binding. Taken together, the data indicate that the larger, beta subunit of glycyl-tRNA synthetase plays a major role in tRNA recognition.  相似文献   

15.
The Arg107 of the alpha subunit is a conserved residue for all known bacterial luciferases. The phosphate moiety of the reduced flavin mononucleotide (FMNH(2)) side chain has been hypothesized to be anchored at this site (A. J. Fisher, F. M. Raushel, T. O. Baldwin, and I. Rayment Biochemistry 34, 6581-6586, 1995). Mutations of alphaArg107 of the Vibrio harveyi luciferase to alanine, serine, and glutamate were carried out to test such a hypothesis. These variants were characterized and compared with the wild-type luciferase with respect to their K(m) for decanal, FMNH(2), and reduced riboflavin in both low- (0.01 or 0.05 M) and high- (0.3 M) phosphate buffers at pH 7.0. Results are consistent with the hypothesized binding of the FMNH(2) phosphate group by alphaArg107. Moreover, the alphaArg107 residue was apparently important in the expression of the luciferase maximal activity and aldehyde binding. Phosphate ion is also known to have other effects on luciferase stability. We compared the three luciferase variants with the native enzyme with respect to the decay rate of the FMN 4a-hydroperoxide intermediate II, and rates of inactivation by trypsin digestion, modification by N-ethylmaleimide, and heat treatment in low- and high-phosphate buffers. On the basis of patterns of the phosphate effects, alphaArg107 appeared to be important to the enhancement of luciferase stability against trypsin proteolysis at high phosphate but was not involved in regulating the intermediate II decay or sensitivity to N-ethylmaleimide modification. Differential effects of mutations on luciferase thermal stability were observed. It is uncertain whether alphaArg107 is involved in the enhanced thermal stability of the native luciferase in high phosphate buffer.  相似文献   

16.
Microspectrophotometry of single crystals of the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium is used to compare the catalytic and regulatory properties of the enzyme in the soluble and crystalline states. Polarized absorption spectra demonstrate that chromophoric intermediates are formed between pyridoxal phosphate at the active site of the beta subunit and added substrates, substrate analogs, and reaction intermediate analogs. Although the crystalline and soluble forms of the enzyme produce some of the same enzyme-substrate intermediates, including Schiff base and quinonoid intermediates, in some cases the equilibrium distribution of these intermediates differs in the two states of the enzyme. Ligands which bind to the active site of the alpha subunit alter the distribution of intermediates formed at the active site of the beta subunit in both the crystalline and soluble states. The three-dimensional structures of the tryptophan synthase alpha 2 beta 2 complex and of a derivative with indole-3-propanol phosphate bound at the active site of the alpha subunit have recently been reported (Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., and Davies, D. R. (1988) J. Biol. Chem. 264, 17857-17871). Our present findings help to establish experimental conditions for selecting defined intermediates for future x-ray crystallographic analysis of the alpha 2 beta 2 complex with ligands bound at the active sites of both alpha and beta subunits. These crystallographic studies should explain how catalysis occurs at the active site of the beta subunit and how the binding of a ligand to one active site affects the binding of a ligand to the other active site which is 25 A away.  相似文献   

17.
We have synthesized and characterized 5'-bromoacetamido-5'-deoxyadenosine (5'-BADA), a new reagent for labeling adenine nucleotide binding sites in enzymatic and regulatory proteins. 5'-BADA possessed exceptionally high solubility and stability in aqueous buffers between pH 5.0 and 8.6 at 25 degrees C. A Dixon plot of data from enzyme kinetic measurements showed that 5'-BADA is a competitive inhibitor of NADH oxidation by 3 alpha,20 beta-hydroxysteroid dehydrogenase with a Ki value of 11.8 mM. This compares with a Ki value of 10 mM for adenosine under similar experimental conditions. Incubating 5'-BADA with a 3 alpha,20 beta-hydroxysteroid dehydrogenase at pH 7.0 and 25 degrees C caused simultaneous loss of both 3 alpha and 20 beta activity. The enzyme inactivation reaction proceeded by a first order kinetic process. The rates of enzyme inactivation as a function of 5'-BADA concentration obeyed saturation kinetics. 2-Bromoacetamide, at ten times the maximum concentration of 5'-BADA, had no measurable effect on enzyme activity during 25 h of incubation. NADH and AMP protected 3 alpha,20 beta-hydroxysteroid dehydrogenase against inactivation by 5'-BADA. The results suggest that 5'-BADA inactivates the enzyme by irreversibly binding to the adenine domain of the NADH cofactor binding region at the catalytic site of 3 alpha,20 beta-hydroxysteroid dehydrogenase. Irreversible binding follows from an alkylation reaction between the bromoacetamido side chain of 5'-BADA and an amino acid at or near the enzyme catalytic site. 5'-BADA is presented as a new reagent for selectively labeling amino acid residues at the adenine nucleotide binding sites of enzymatic and regulatory proteins.  相似文献   

18.
Photoaffinity labeling of (Na+K+)-ATPase with [125I]iodoazidocymarin   总被引:3,自引:0,他引:3  
A radioiodinated, photoactive cardiac glycoside derivative, 4'-(3-iodo-4-azidobenzene sulfonyl)cymarin (IAC) was synthesized and used to label (Na+K+)-ATPase in crude membrane fractions. In the dark, IAC inhibited the activity of (Na+K+)-ATPase in electroplax microsomes from Electrophorus electricus with the same I50 as cymarin. [125I]IAC binding, in the presence of Mg2+ and Pi, was specific, of high affinity (KD = 0.4 microM), and reversible (k-1 = 0.11 min-1) at 30 degrees C. At 0 degree C, the complex was stable for at least 3 h, thus permitting washing before photolysis. Analysis of [125]IAC photolabeled electroplax microsomes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (7-14%) showed that most of the incorporated radioactivity was associated with the alpha (Mr = 98,000) and beta (Mr = 44,000) subunits of the (Na+K+)-ATPase (ratio of alpha to beta labeling = 2.5). A higher molecular weight peptide (100,000), similar in molecular weight to the brain alpha(+) subunit, and two lower molecular weight peptides (12,000-15,000), which may be proteolipid, were also labeled. Two-dimensional gel electrophoresis (isoelectric focusing then SDS-PAGE, 10%) resolved the beta subunit into 12 labeled peptides ranging in pI from 4.3 to 5.5. When (Na+K+)-ATPase in synaptosomes from monkey brain cortex was photolabeled and analyzed by SDS-PAGE (7-14%), specific labeling of the alpha(+), alpha, and beta subunits could be detected (ratio of alpha(+) plus alpha to beta labeling = 35). The results show that [125I]IAC is a sensitive probe of the cardiac glycoside binding site of (Na+K+)-ATPase and can be used to detect the presence of the alpha(+) subunit in crude membrane fractions from various sources.  相似文献   

19.
Tritiated meta-sulfonate benzene diazonium ([3H]MSBD), a molecule structurally related to 4-aminobutyrate (GABA), which presents a reactivity toward nucleophilic amino acid residues, was synthesized to investigate the GABA binding site on the GABAA receptor. Irreversible labeling reactions using [3H]MSBD were performed on purified GABAA receptors isolated from cow brain membranes and labeled receptors were analyzed by SDS/PAGE. [3H]MSBD was found to be specifically incorporated into proteins in the 45-60 kDa molecular mass range which were identified as alpha1 subunits and beta2/beta3 subunits by immunoprecipitation with subunit-specific antibodies. The specific immunoprecipitation of alpha and beta subunits confirms that binding of [3H]MSBD occurs at the boundary of these subunits. These labeling results confirm the involvement of nucleophilic residues from the beta subunit but reveal also the contribution of yet unidentified nucleophilic residues on the alpha subunit for the GABA binding site.  相似文献   

20.
Three F1 preparations, the beef heart (MF1) and thermophilic bacterium (TF1) holoenzymes, and the alpha 3 beta 3 "core" complex of TF1 reconstituted from individually expressed alpha and beta subunits, were compared as to their kinetic and binding stoichiometric responses to covalent photoaffinity labeling with BzATP and BzADP (+/- Mg2+). Each enzyme displayed an enhanced pseudo-first order rate of photoinhibition and one-third of the sites covalent binding to a catalytic site for full inhibition, plus, but not minus Mg2+. Titration of near stoichiometric [MgBzADP]/[F1] ratios during photolysis disclosed two sequential covalent binding patterns for each enzyme; a high affinity binding corresponding to unistoichiometric covalent association concomitant with enzyme inhibition, followed by a low affinity multisite-saturating covalent association. Thus, in the absence of the structural asymmetry inducing gamma delta epsilon subunits of the holoenzyme, the sequential binding of nucleotide at putative catalytic sites on the alpha 3 beta 3 complex of any F1 appears sufficient to effect binding affinity changes. With MF1, final covalent saturation of BzADP-accessible sites was achieved with 2 mol of BzADP/mol of enzyme, but with TF1 or its alpha 3 beta 3 complex, saturation required 3 mol of BzADP/mol of enzyme. Such differential final labeling stoichiometries could arise because of the endogenous presence of 1 nucleotide already bound to one of the 3 potential catalytic sites on normally prepared MF1, whereas TF1, possessing no endogenous nucleotide, has 3 vacant BzADP-accessible sites. Kinetics measurements revealed that regardless of the incremental extent of inhibition of the TF1 holoenzyme by BzADP during photolysis, the two higher apparent Km values (approximately 1.5 x 10(-4) and approximately 10(-3) M, respectively) of the progressively inactivated incubation are unchanged relative to fully unmodified enzyme. As reported for BzATP (or BzADP) and MF1 (Ackerman, S.H., Grubmeyer, C., and Coleman, P.S. (1987) J. Biol. Chem. 262, 13765-13772), this supports the fact that the photocovalent inhibition of F1 is a one-hit one-kill phenomenon. Isoelectric focusing gels revealed that [3H]BzADP covalently modifies both TF1 and MF1 exclusively on the beta subunit, whether or not Mg2+ is present. A single 19-residue [3H]BzADP-labeled peptide was resolved from a tryptic digest of MF1, and this peptide corresponded with the one believed to contain at least a portion of the beta subunit catalytic site domain (i.e. beta Ala-338----beta Arg-356).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号