首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
We have determined the complete nucleotide sequences of three functionally related nitrogen assimilation regulatory genes from Klebsiella pneumoniae and Rhizobium meliloti. These genes are: 1) The K. pneumoniae general nitrogen assimilation regulatory gene ntrC (formerly called glnG), 2) the K. pneumoniae nif-specific regulatory gene nifA, and 3) an R. meliloti nif-specific regulatory gene that appears to be functionally analogous to the K. pneumoniae nifA gene. In addition to the DNA sequence data, gel-purified K. pneumoniae nifA protein was used to determine the amino acid composition of the nifA protein. The K. pneumoniae ntrC and nifA genes code for proteins of 52,259 and 53,319 d respectively. The R. meliloti nifA gene codes for a 59,968 d protein. A central region within each polypeptide, consisting of approximately 200 amino acids, is between 52% and 58% conserved among the three proteins. Neither the amino termini nor the carboxy termini show any conserved sequences. Together with data that shows that the three regulatory proteins activate promoters that share a common consensus sequence in the -10 (5'-TTGCA-3') and -23 (5'-CTGG-3') regions, the sequence data presented here suggest a common evolutionary origin for the three regulatory genes.  相似文献   

9.
10.
The nifA gene of Rhizobium meliloti is oxygen regulated.   总被引:35,自引:19,他引:16       下载免费PDF全文
Experiments using plasmid-borne gene fusions and direct RNA measurements have revealed that expression from the nifA gene is induced in Rhizobium meliloti when the external oxygen concentration is reduced to microaerobic levels. Induction occurs in the absence of alfalfa and in the presence of fixed nitrogen and does not require ntrC. The production of functional nifA gene product (NifA) can be demonstrated by its ability to activate the nitrogenase promoter P1. Aerobic induction of nifA can also occur during nitrogen starvation at low pH, but in this case induction is dependent on ntrC and does not lead to P1 activation. The data indicate that reduced oxygen tension is potentially a major trigger for symbiotic activation of nitrogen fixation in Rhizobium species.  相似文献   

11.
12.
Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with L-alanine, L-serine, L-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol.L-1 ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol x L-1 urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.  相似文献   

13.
14.
15.
We describe the cloning of an ntrC gene of Agrobacterium tumefaciens C58 by interspecific complementation of an Escherichia coli ntrC mutant. Restriction mapping and Southern blot analysis of the complementing clone identified a 1.7-kb EcoRI-PvuII DNA fragment whose sequence was determined. Analysis of this sequence revealed coding regions corresponding to a complete ntrC gene and the C-terminal region of an ntrB gene. Amino acid sequence comparisons of A. tumefaciens NTRC protein with NTRC sequences from Rhizobium meliloti, Bradyrhizobium sp. (Parasponia), Klebsiella pneumoniae, E. coli, and Salmonella typhimurium show strong sequence conservation supporting DNA hybridization data, demonstrating strong evolutionary homology among ntrC genes of Rhizobiaceae. The C58 NTRC protein has been identified, by 35S-labeling, in a T7 RNA polymerase (pT7-7) expression vector system.  相似文献   

16.
17.
18.
The nifA gene is an important regulatory gene and its product, NifA protein, regulates the expression of many nif genes involved in the nitrogen fixation process. We introduced multiple copies of the constitutively expressed Sinorhizobium meliloti (Sm) or Enterobacter cloacae (Ec) nifA gene into both the nifA mutant strain SmY and the wild-type strain Sm1021. Root nodules produced by SmY containing a constitutively expressed Sm nifA gene were capable of fixing nitrogen, while nodules produced by SmY containing the EC nifA gene remained unable to fix nitrogen, as is the case for SmY itself. However, transfer of an additional Sm nifA gene into Sm1021 improved the nitrogen-fixing efficiency of root nodules to a greater extent than that observed upon transfer of the EC nifA gene into Sm1021. Comparative analysis of amino acid sequences between Sm NifA and EC NifA showed that the N-terminal domain was the least similar, but this domain is indispensable for complementation of the Fix-phenotype of SmY by Sm Ni  相似文献   

19.
In the slow-growing soybean symbiont, Bradyrhizobium japonicum (strain 110), a nifA-like regulatory gene was located immediately upstream of the previously mapped fixA gene. By interspecies hybridization and partial DNA sequencing the gene was found to be homologous to nifA from Klebsiella pneumoniae and Rhizobium meliloti, and to a lesser extent, also to ntrC from K. pneumoniae. The B. japonicum nifA gene product was shown to activate B. japonicum and K. pneumoniae nif promoters (using nif::lacZ translational fusions) both in Escherichia coli and B. japonicum backgrounds. In the heterologous E. coli system activation was shown to be dependent on the ntrA gene product. Site-directed insertion and deletion/replacement mutagenesis revealed that nifA is probably the promoter-distal cistron within an operon. NifA- mutants were Fix- and pleiotropic: (i) they were defective in the synthesis of several proteins including the nifH gene product (nitrogenase Fe protein); the same proteins had been known to be repressed under aerobic growth of B. japonicum but derepressed at low O2 tension; (ii) the mutants had an altered nodulation phenotype inducing numerous, small, widely distributed soybean nodules in which the bacteroids were subject to severe degradation. These results show that nifA not only controls nitrogenase genes but also one or more genes involved in the establishment of a determinate, nitrogen-fixing root nodule symbiosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号