首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A bioluminescent procedure to measure noradrenaline and serotonin has been realized. The amines are oxidized by the monoamine oxidase of pig brain mitochondria. The NH3 generated in this reaction is directly measured by enzymatic reaction. The coenzyme of this last reaction is the NADH,H+ which is measured with a bioluminescent system: the FMN-oxidoreductase-luciferase. The extension to other amines is possible, it depends only of the specificity of the monoamine oxidase.  相似文献   

2.
A new spectrophotometric assay for the determination of monoamine oxidase activity is described. This simple and sensitive method is based on a coupled indicator reaction measuring the monoamine oxidase-dependent production of hydrogen peroxide. In this reaction the hydrogen peroxide-dependent oxidation of leuco-2′,7′-dichlorofluorescein to 2′,7′-dichlorofluorescein catalyzed by horseradish peroxidase is followed at 502 nm. Using benzylamine and seven biogenic amines as substrates, linear relationships between 2′,7′-dichlorofluorescein formation rate and monoamine oxidase concentration were found. The assay is especially suitable for determining substrate specificities for physiological amines as well as for inhibitor studies with pargyline or the monoamine oxidase A- and B-specific inhibitors clorgyline and deprenyl.  相似文献   

3.
The assimilable organic carbon (AOC) test is a standardized measure of the bacterial growth potential of treated water. We describe the design and initial development of an AOC assay that uses bioluminescent derivatives of AOC test bacteria. Our assay is based on the observation that bioluminescence peaks at full cell yield just prior to the onset of the stationary phase during growth in a water sample. Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX bacteria were mutagenized with luxCDABE operon fusion and inducible transposons and were selected on minimal medium. Independent mutants were screened for high luminescence activity and predicted AOC assay sensitivity. All mutants tested were able to grow in tap water under AOC assay conditions. Strains P-17 I5 (with p-aminosalicylate inducer) and NOX I3 were chosen for use in the bioluminescence AOC test. Peak bioluminescence and plate count AOC were linearly related for both test bacteria, though data suggest that the P-17 bioluminescence assay requires more consistent luminescence monitoring. Bioluminescence results were obtained 2 or 3 days postinoculation, compared with 5 days for the ATP luminescence AOC assay and 8 days for the plate count assay. Plate count AOC assay results for nonmutant and bioluminescent bacteria from 36 water samples showed insignificant differences, indicating that the luminescent bacteria retained a full range of AOC measurement capability. This bioluminescence method is amenable to automation with a microplate format with programmable reagent injection.  相似文献   

4.
The assimilable organic carbon (AOC) test is a standardized measure of the bacterial growth potential of treated water. We describe the design and initial development of an AOC assay that uses bioluminescent derivatives of AOC test bacteria. Our assay is based on the observation that bioluminescence peaks at full cell yield just prior to the onset of the stationary phase during growth in a water sample. Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX bacteria were mutagenized with luxCDABE operon fusion and inducible transposons and were selected on minimal medium. Independent mutants were screened for high luminescence activity and predicted AOC assay sensitivity. All mutants tested were able to grow in tap water under AOC assay conditions. Strains P-17 I5 (with p-aminosalicylate inducer) and NOX I3 were chosen for use in the bioluminescence AOC test. Peak bioluminescence and plate count AOC were linearly related for both test bacteria, though data suggest that the P-17 bioluminescence assay requires more consistent luminescence monitoring. Bioluminescence results were obtained 2 or 3 days postinoculation, compared with 5 days for the ATP luminescence AOC assay and 8 days for the plate count assay. Plate count AOC assay results for nonmutant and bioluminescent bacteria from 36 water samples showed insignificant differences, indicating that the luminescent bacteria retained a full range of AOC measurement capability. This bioluminescence method is amenable to automation with a microplate format with programmable reagent injection.  相似文献   

5.
Many cellular metabolites can be measured with high sensitivity using bioluminescent techniques. These metabolites are coupled to an appropriate enzyme to produce NAD(P)H, which can then be coupled to the bioluminescent reactions. The sensitivity of bioluminescence cannot be readily applied to methods in which cellular metabolites consume NAD(P)H because of the difficulty in measuring, with sufficient sensitivity, decreases in the concentration of NAD(P)H against a high background NAD(P)H concentration. We have overcome these technical difficulties by developing a bioluminescent reagent to measure the production of NAD(P)+. Assays for creatine/creatine phosphate, pyruvate, and succinate, as well as the kinetic measurement of lactate, are described for a range of biological material. The assays are highly sensitive, quantitative, and reproducible and show no sample-specific inhibition. The range of assays and the diverse biological material tested suggests that NAD(P)+ bioluminescence has a wide potential for application.  相似文献   

6.
Using a series of exogenous fluorescent molecules as potential energy acceptors, the hypothesis on the activity of the upper electron-excited states in bioluminescence was tested. The results in bacterial and firefly bioluminescent enzyme systems were compared. Similar activity to the energetic precursor in bacterial bioluminescence was not proven in the case of the firefly system, the result of a very efficient intramolecular energy transfer in the emitter of the firefly bioluminescence. The influence of a number of metallic salts on a bacterial bioluminescent enzyme system was studied. Bioluminescence inhibition coefficients were compared to the free energies of electron withdrawing of cations. The correlation shows that inhibition and activation of luminescence intensity result from the effects of cations on electron transfer in the bioluminescent system.  相似文献   

7.
Genes encoding bioluminescence from Vibrio harveyi were cloned into Pseudomonas syringae pv. phaseoli-cola, resulting in high levels of bioluminescence. After inoculation of sterile and nonsterile soil slurries with bioluminescent P. syringae, cells could not be identified by conventional light microscopy. However, when we used charge coupled device-enhanced microscopy, bioluminescent single cells were detected easily in dark fields despite masking by soil particulate matter, and in addition, the extent of competition from indigenous soil bacteria could be monitored. The technique which we describe offers great potential for tracking and determining the spatial distribution of genetically marked microorganisms in the environment.  相似文献   

8.
Bioluminescence is widely used in biosensors. For water toxicity analysis, the naturally bioluminescent bacteria Vibrio fischeri have been used extensively. We investigated the suitability of two new beetle luciferases for Escherichia coli light off biosensors: Macrolampis firefly and Pyrearinus termitilluminans click beetle luciferases. The bioluminescence detection assay using this system is very sensitive, being comparable or superior to V. fischeri. The luciferase of P. termitilluminans produces a strong and sustained bioluminescence that is useful for less sensitive and inexpensive assays that require integration of the emission, whereas Macrolampis luciferase displays a flash-like luminescence that is useful for fast and more sensitive assays. The effect of heavy metals and sanitizing agents was analyzed. Zinc, copper, 1-propanol, and iodide had inhibitory effects on bioluminescence and growth assays; however, in these cases the bioluminescence was not a very reliable indicator of cell growth and metabolic activity because these agents also inhibited the luciferase. On the other hand, mercury and silver strongly affected cell bioluminescence and growth but not the luciferase activity, indicating that bioluminescence was a reliable indicator of cell growth and metabolic activity in this case. Finally, bioluminescent E. coli immobilized in agarose matrix gave a more stable format for environmental assays.  相似文献   

9.
Methionine is one of the essential and first limiting amino acids in animal nutrition. In this study, an Escherichia coli methionine auxotroph bacterial strain that exhibits a linear growth response to methionine concentrations was transformed with a plasmid containing genes encoding ampicillin resistance and bioluminescence in order to develop a microbiological technique for methionine quantitation. Transformants were selected based on antibiotic resistance and plasmid containing candidates were confirmed by restriction enzyme digestion and gel electrophoresis. To confirm the bioluminescent phenotype, video imaging of the strain using long exposure photography yielded colonies exhibiting bioluminescence. The strain was also tested in the presence of ampicillin supplemented media with increasing methionine concentrations and growth response (measured as optical density, OD), growth rates and methionine affinities were compared before and after transformation. Although the transformed E. coli methionine auxotroph exhibited somewhat different growth kinetic responses than the nontransformed strain, the standard curves used for estimating methionine concentrations were not different. Based on the results in this study the transformed bioluminescent strain could be used as an OD-based assay if bioluminescence equipment and materials are not available.  相似文献   

10.
Vascular adhesion protein-1 (VAP-1), also known as semicarbazide-sensitive amine oxidase (SSAO) or copper-containing amine oxidase (AOC3, EC 1.4.3.6), catalyzes oxidative deamination of primary amines. One endogenous substrate has recently been described (Siglec 10), and although its mechanism of action in vivo is not completely understood, it is suggested to play a role in immune cell trafficking, making it a target of interest for autoimmune and inflammatory diseases. Much of the enzymology performed around this target has been conducted with absorbance, fluorescent, or radiometric formats that can have some limitations for high-throughput screening and subsequent compound profiling. The authors present the use of a bioluminescent assay, originally developed for monoamine oxidase enzymes, in a high-throughput format. It can be used for related SSAOs such as AOC1 given their substrate similarity with VAP-1. The authors also demonstrate that it is compatible with different sources of VAP-1, both purified recombinant and VAP-1 overexpressed on live cells.  相似文献   

11.
A flexible, comparatively inexpensive system based on a liquid nitrogen-cooled slow-scan CCD (charge coupled device) camera is presented, which can be employed for quantitative low-light (bioluminescence, chemiluminescence or fluorescence) imaging. Using this camera system and the firefly luciferase (LUC) as a screenable marker, transgenic tobacco lines have been produced by direct gene transfer. Bioluminescence emitted from single tobacco cells transiently expressing the firefly luciferase gene (Luc) as well as from stably transformed calli, regenerated shoots, plantlets and T1 seedlings could be monitored in vivo with no effect on the viability of the material analysed. The patterns of light emission from sections through Luc -expressing leaves and bioluminescent single protoplasts isolated from such leaves were also imaged microscopically. The assay used to detect in vivo LUC activity was optimized by quantifying bioluminescence emitted from Luc -expressing tobacco protoplasts and leaves incubated in different substrate solutions and determining the kinetics of light emission during incubation in the substrate solution.  相似文献   

12.
The chemical mechanisms underlying visible bioluminescence in the fungus Mycena chlorophos are not clear. A combination of dihydronicotinamide adenine dinucleotide phosphate (NADPH) and hispidin, which has been reported to increase the intensity of in vitro luminescence in crude cold‐water extracts prepared from the bioluminescent fruiting bodies of M. chlorophos, exhibited potential bioluminescence activation in the early bioluminescence stages, in which the bioluminescence was ultra‐weak, for living gills and luminescence activation for non‐bioluminescent gills, which was collapsed by freezing and subsequent thawing, at all bioluminescence stages. These abilities were not evident in considerably bioluminescent gills. These abilities were blocked by trans‐4‐hydroxycinnamic acid and trans‐3,4‐dihydroxycinnamic acid, which were identified as in vivo bioluminescence‐activating components. Original bioluminescence and bioluminescence produced from the addition of trans‐4‐hydroxycinnamic acid and trans‐3,4‐dihydroxycinnamic acid in living gills were almost completely inhibited by 10 mM NaN3, whereas the luminescence produced form the combination of NADPH and hispidin in thawed non‐bioluminescent and living gills at the early weak bioluminescence stages was not inhibited by 10 mM NaN3. Thus, the combination of NADPH and hispidin plays different roles in luminescence systems compared with essential bioluminescence systems, and the combination of NADPH and hispidin was not essential for visible bioluminescence in living gills.  相似文献   

13.
A review of the mechanisms of the exogenous redox compounds influence on the bacterial coupled enzyme system: NAD(P)H:FMN-oxidoreductase-luciferase has been done. A series of quinones has been used as model organic oxidants. The three mechanisms of the quinones' effects on bioluminescence were suggested: (1) inhibition of the NADH-dependent redox reactions; (2) interactions between the compounds and the enzymes of the coupled enzyme system; and (3) intermolecular energy migration. The correlation between the kinetic parameters of bioluminescence and the standard redox potential of the quinones proved that the inhibition of redox reactions was the key mechanism by which the quinones decrease the light emission intensity. The changes in the fluorescence anisotropy decay of the endogenous flavin of the enzyme preparations showed the direct interaction between quinones and enzymes. It has been demonstrated that the intermolecular energy migration mechanism played a minor role in the effect of quinones on the bioluminescence. A comparative analysis of the effect of quinones, phenols and inorganic redox compounds on bioluminescent coupled enzyme systems has been carried out.  相似文献   

14.
R1, a novel repressor of the human monoamine oxidase A   总被引:5,自引:0,他引:5  
  相似文献   

15.
An automated continuous toxicity test system was developed using a recombinant bioluminescent freshwater bacterium. The groundwater-borne bacterium, Janthinobacterium lividum YH9-RC, was modified with luxAB and optimized for toxicity tests using different kinds of organic carbon compounds and heavy metals. luxAB-marked YH9-RC cells were much more sensitive (average 7.3-8.6 times) to chemicals used for toxicity detection than marine Vibrio fischeri cells used in the Microtox assay. Toxicity tests for wastewater samples using the YH9-RC-based toxicity assay showed that EC50-5 min values in an untreated raw wastewater sample (23.9 +/- 12.8%) were the lowest, while those in an effluent sample (76.7 +/- 14.9%) were the highest. Lyophilization conditions were optimized in 384-multiwell plates containing bioluminescent bacteria that were pre-incubated for 15 min in 0.16 M of trehalose prior to freeze-drying, increasing the recovery of bioluminescence and viability by 50%. Luminously modified cells exposed to continuous phenol or wastewater stream showed a rapid decrease in bioluminescence, which fell below detectable range within 1 min. An advanced toxicity test system, featuring automated real-time toxicity monitoring and alerting functions, was designed and finely tuned. This novel continuous toxicity test system can be used for real-time biomonitoring of water toxicity, and can potentially be used as a biological early warning system.  相似文献   

16.
Gaussia princeps luciferase (GLuc) generates an intense burst of blue light when exposed to coelenterazine in the absence of ATP. Here we show that this 5‐disulfide containing enzyme can be used as a facile and convenient substrate for studies of oxidative protein folding. Reduced GLuc (rGLuc), with 10 free cysteine residues, is completely inactive as a luciferase but >60% bioluminescence activity, compared to controls, can be recovered using a range of oxidizing regimens in the absence of the exogenous shuffling activity of protein disulfide isomerase (PDI). The sulfhydryl oxidase QSOX1 can be assayed using rGLuc in a simple bioluminescence plate reader format. Similarly, low concentrations of rGLuc can be oxidized by millimolar levels of dehydroascorbate, hydrogen peroxide or much lower concentrations of sodium tetrathionate. The oxidative refolding of rGLuc in the presence of a range of glutathione redox buffers is only marginally accelerated by micromolar levels of PDI. This modest rate enhancement probably results from a relatively simple disulfide connectivity in native GLuc; reflecting two homologous domains each carrying two disulfide bonds with a single interdomain disulfide. When GLuc is reoxidized under denaturing conditions the resulting scrambled protein (sGLuc) can be used in a sensitive bioluminescence assay for reduced PDI in the absence of added exogenous thiols. Finally, the general facility by which rGLuc can recover bioluminescent activity in vitro provides a sensitive method for the assessment of inhibitors of oxidative protein folding.  相似文献   

17.
The state of the art of firefly luciferase research is reviewed with special emphasis on its purification and immobilization. The notion of bioluminescence and its role in APT monitoring is described. The need to purify luciferase and the advantages of immobilization are discussed. An insight into the existing methods of luciferase purification and immobilization is given. The scope of the bioluminescent assay is underlined.  相似文献   

18.
The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.  相似文献   

19.
Recent reports suggest that the selective advantage of bioluminescence for bacteria is mediated by light-dependent stimulation of photolyase to repair DNA lesions. Despite evidence for this model, photolyase mutants have not been characterized in a naturally bioluminescent bacterium, nor has this hypothesis been tested in bioluminescent bacteria under natural conditions. We have now characterized the photolyase encoded by phr in the bioluminescent bacterium Vibrio fischeri ES114. Consistent with Phr possessing photolyase activity, phr conferred light-dependent resistance to UV light. However, upon comparing ES114 to a phr mutant and a dark Delta luxCDABEG mutant, we found that bioluminescence did not detectably affect photolyase-mediated resistance to UV light. Addition of the light-stimulating autoinducer N-3-oxo-hexanoyl homoserine lactone appeared to increase UV resistance, but this was independent of photolyase or bioluminescence. Moreover, although bioluminescence confers an advantage for V. fischeri during colonization of its natural host, Euprymna scolopes, the phr mutant colonized this host to the same level as the wild type. Taken together, our results indicate that at least in V. fischeri strain ES114, the benefits of bioluminescence during symbiotic colonization are not mediated by photolyase, and although some UV resistance mechanism may be coregulated with bioluminescence, we found no evidence that light production benefits cells by stimulating photolyase in this strain.  相似文献   

20.
Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand –receptor and receptor–receptor interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号