首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dense-core granules represent an adaptation of specialized secretory cell to facilitate stimulus-regulated release of stored proteins. Such granules are a prominent feature of mammalian neuroendocrine and exocrine cells and are also well developed in the ciliates. In Tet-rahymena thermophila, the ability to generate mutants in dense-core granule biosynthesis and fusion presents a versatile system for dissecting steps in regulated exocytosis. We have previously shown that defective granules in such mutants could be characterized by several biochemical criteria, including buoyant density, which increases during maturation, and the degree of proteolytic processing of the content precursors. We have now used indirect immunofluorescence, taking advantage of a monoclonal antibody directed against a granule protein, to visualize the morphology and distribution of both granules and putative granule intermediates in mutant and wild-type cells. The results are consistent with the biochemical analysis and extend our characterization of the mutants, allowing us to distinguish four classes. In addition, the assay represents a powerful technique for diagnosis of new mutants. © 1992 Wiley-Liss, Inc.  相似文献   

2.
Phogrin, a transmembrane glycoprotein of neuroendocrine cells, is localized to dense-core secretory granules. We have investigated the subcellular targeting of phogrin by analyzing the sorting of a series of deletion mutants to the regulated pathway of secretion in AtT20 cells. The lumenal domain as a soluble protein was efficiently routed to granules, based on a combination of morphological analysis and secretion studies. Sorting was not dependent on a candidate targeting signal consisting of an N-terminal conserved cysteine-rich motif. Both the pro-region and the lumenal domain of mature, post-translationally processed phogrin independently reached the granule, although the pro-region was sorted more efficiently. Once within the regulated secretory pathway, all phogrin lumenal domain proteins were stored in functional granules for extended periods of time. Thus, phogrin possesses several domains contributing to its targeting to the secretory granule. Our findings support a model of granule biogenesis where proteins are sorted on the basis of their biochemical properties rather than via signal-dependent binding to a targeting receptor. Sorting of integral membrane proteins mediated by the lumenal domain may ensure that functionally important transmembrane molecules are included in the forming granule.  相似文献   

3.
The formation of dense core secretory granules is a multistage process beginning in the trans Golgi network and continuing during a period of granule maturation. Direct interactions between proteins in the membrane and those in the forming dense core may be important for sorting during this process, as well as for organizing membrane proteins in mature granules. We have isolated two mutants in dense core granule formation in the ciliate Tetrahymena thermophila, an organism in which this pathway is genetically accessible. The mutants lie in two distinct genes but have similar phenotypes, marked by accumulation of a set of granule cargo markers in intracellular vesicles resembling immature secretory granules. Sorting to these vesicles appears specific, since they do not contain detectable levels of an extraneous secretory marker. The mutants were initially identified on the basis of aberrant proprotein processing, but also showed defects in the docking of the immature granules. These defects, in core assembly and docking, were similarly conditional with respect to growth conditions, and therefore are likely to be tightly linked. In starved cells, the processing defect was less severe, and the immature granules could dock but still did not undergo stimulated exocytosis. We identified a lumenal protein that localizes to the docking-competent end of wildtype granules, but which is delocalized in the mutants. Our results suggest that dense cores have functionally distinct domains that may be important for organizing membrane proteins involved in docking and fusion.  相似文献   

4.
The intestinal cells of Caenorhabditis elegans embryos contain prominent, birefringent gut granules that we show are lysosome-related organelles. Gut granules are labeled by lysosomal markers, and their formation is disrupted in embryos depleted of AP-3 subunits, VPS-16, and VPS-41. We define a class of gut granule loss (glo) mutants that are defective in gut granule biogenesis. We show that the glo-1 gene encodes a predicted Rab GTPase that localizes to lysosome-related gut granules in the intestine and that glo-4 encodes a possible GLO-1 guanine nucleotide exchange factor. These and other glo genes are homologous to genes implicated in the biogenesis of specialized, lysosome-related organelles such as melanosomes in mammals and pigment granules in Drosophila. The glo mutants thus provide a simple model system for the analysis of lysosome-related organelle biogenesis in animal cells.  相似文献   

5.
Summary Chromaffin granules from bovine adrenal medullary chromaffin cells have been found to contain small vesicular structures bounded by unit membranes. Detection of these intragranular vesicles within intact cells requires the use of quick-freezing methods. The intragranular vesicles are labile to fixation by aldehydes which explains why they have not been described in intact cells until now. They are found in approximately 60% of the dense-core chromaffin granules in cells and 85% of isolated granules. They are usually clustered in groups of one to as many as five between the core and the inner surface of the granule membrane. The intragranular vesicles are independent vesicles in that they do not appear as simple invaginations of the granule membrane in either serial thin-section or freeze-etch views. Furthermore, they are released from the cell along with granule contents during nicotine-induced secretion of catecholamines. The structural heterogeneity provided by the intragranular vesicles may be related to the functional heterogeneity of granule contents observed in many recent biochemical studies.  相似文献   

6.
P bodies promote stress granule assembly in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Recent results indicate that nontranslating mRNAs in eukaryotic cells exist in distinct biochemical states that accumulate in P bodies and stress granules, although the nature of interactions between these particles is unknown. We demonstrate in Saccharomyces cerevisiae that RNA granules with similar protein composition and assembly mechanisms as mammalian stress granules form during glucose deprivation. Stress granule assembly is dependent on P-body formation, whereas P-body assembly is independent of stress granule formation. This suggests that stress granules primarily form from mRNPs in preexisting P bodies, which is also supported by the kinetics of P-body and stress granule formation both in yeast and mammalian cells. These observations argue that P bodies are important sites for decisions of mRNA fate and that stress granules, at least in yeast, primarily represent pools of mRNAs stalled in the process of reentry into translation from P bodies.  相似文献   

7.
The aim of this work was to investigate starch granule numbers in Arabidopsis (Arabidopsis thaliana) leaves. Lack of quantitative information on the extent of genetic, temporal, developmental, and environmental variation in granule numbers is an important limitation in understanding control of starch degradation and the mechanism of granule initiation. Two methods were developed for reliable estimation of numbers of granules per chloroplast. First, direct measurements were made on large series of consecutive sections of mesophyll tissue obtained by focused ion beam-scanning electron microscopy. Second, average numbers were calculated from the starch contents of leaves and chloroplasts and estimates of granule mass based on granule dimensions. Examination of wild-type plants and accumulation and regulation of chloroplast (arc) mutants with few, large chloroplasts provided the following new insights. There is wide variation in chloroplast volumes in cells of wild-type leaves. Granule numbers per chloroplast are correlated with chloroplast volume, i.e. large chloroplasts have more granules than small chloroplasts. Mature leaves of wild-type plants and arc mutants have approximately the same number of granules per unit volume of stroma, regardless of the size and number of chloroplasts per cell. Granule numbers per unit volume of stroma are also relatively constant in immature leaves but are greater than in mature leaves. Granule initiation occurs as chloroplasts divide in immature leaves, but relatively little initiation occurs in mature leaves. Changes in leaf starch content over the diurnal cycle are largely brought about by changes in the volume of a fixed number of granules.  相似文献   

8.
Severe stress causes plant and animal cells to form large cytoplasmic granules containing RNA and proteins. Here, we demonstrate the existence of stress-induced cytoplasmic RNA granules in Schizosaccharomyces pombe. Homologs to several known protein components of mammalian processing bodies and stress granules are found in fission yeast RNA granules. In contrast to mammalian cells, poly(A)-binding protein (Pabp) colocalizes in stress-induced granules with decapping protein. After glucose deprivation, protein kinase A (PKA) is required for accumulation of Pabp-positive granules and translational down-regulation. This is the first demonstration of a role for PKA in RNA granule formation. In mammals, the translation initiation protein eIF2α is a key regulator of formation of granules containing poly(A)-binding protein. In S. pombe, nonphosphorylatable eIF2α does not block but delays granule formation and subsequent clearance after exposure to hyperosmosis. At least two separate pathways in S. pombe appear to regulate stress-induced granules: pka1 mutants are fully proficient to form granules after hyperosmotic shock; conversely, eIF2α does not affect granule formation in glucose starvation. Further, we demonstrate a Pka1-dependent link between calcium perturbation and RNA granules, which has not been described earlier in any organism.  相似文献   

9.
Toxoplasma gondii is an obligate intracellular parasite. When searching for a new cell to invade, the parasites have to confront the stress of being exposed to the extracellular environment. The mechanisms by which T. gondii survives outside the host cells are poorly understood. In this work we show that extracellular parasites form mRNA aggregates with characteristics of stress granules. Intracellular tachyzoites or bradyzoites do not form mRNA granules. We tested different stimuli that trigger granule formation in vitro and discovered that a buffer that mimics the host cell cytosol ionic composition (high potassium) strongly induces granule formation, suggesting that the granules arise when the parasites come in contact with the host cell cytosol during egress. We examined the importance of granule formation for parasite viability and show that the parasite populations that are able to form granules have a growth advantage, increased invasion, and decreased apoptosis in the extracellular environment. Overall, granule formation improves the fitness of extracellular parasites and increases the efficiency of the lytic cycle.  相似文献   

10.
Stress granules are RNP-containing particles arising in the cytoplasm in response to environmental stress. They are dynamic structures assembling and disassembling in the cytoplasm very rapidly. We have studied whether the cytoskeleton is involved in the formation of stress granules. Stress granules were induced in CV-1 cells by sodium arsenate treatment and visualized by immunofluorescent staining with antibodies either to the p170 subunit of eIF3 or to poly(A)-binding protein. Treatment with sodium arsenate for 30-120 min led to assembling of stress granules in a majority of CV-1 cells. Disruption of MT array with nocodazole treatment abolished arsenate-induced formation of stress granules. A similar effect was induced by the microtubule-depolymerizing drug vinblastine, though the influence of the microtubule-stabilizing drug paclitaxel was opposite. Nocodazole treatment did not prevent arsenate-induced phosphorylation of the eIF-2alpha factor, essential for stress granule formation, suggesting that the presence of intact MT array is required for granule assembly. Unexpectedly, treatment of cells with the actin filament-disrupting drug latrunculin B slightly enhanced stress granule formation. We propose that stress granule formation is microtubule-dependent process and likely is facilitated by the motor protein-driven movement of individual stress granule components (e.g., mRNP) along microtubules.  相似文献   

11.
Cytolytic granules are specific organelles of activated cytotoxic lymphocytes mediating storage and regulated excretion of lytic molecules for killing of target cells. A variety of the other granule components may also participate in granule-mediated cytotoxicity. In this study, the subcellular localization of lipids in the granules of human decidual CD56+ natural killer-like cells was determined by staining with malachite green aldehyde and imidazole-buffered osmium tetroxide. Lipids were shown, for the first time, to be a constitutive component of cytolytic granules. Lipids formed an additional structural microdomain, located between the granule-limiting membrane and the granule core. Images of the granules on serial sections suggested that intragranular lipids wrap the core. We speculate that granule lipids participate in packing of lytic molecules inside the granules, in autocrine signaling ending granule secretion, and in the killing process.  相似文献   

12.
Adrenal paraneurone contractile proteins and stimulus-secretion coupling   总被引:5,自引:0,他引:5  
Actin, myosin, and alpha-actinin have been isolated from adrenal chromaffin cells and characterized. Their physicochemical properties have been studied and their cell localization revealed by biochemical, immunocytochemical, and ultrastructural techniques. Alpha-actinin is a component of chromaffin granule membranes and some of the cell actin copurifies with these secretory granules. Myosin is not detected in the granules but is present mainly in the cytosol. Trifluoperazine, a calmodulin antagonist, blocks stimulation-induced hormone release from chromaffin cells at a step distal from Ca2+ entry. High affinity calmodulin binding sites have also been found in chromaffin granule membranes. Furthermore, microinjection of calmodulin antibodies into chromaffin cells blocks hormone output in response to stimulation. In view of the above findings, the possible roles of contractile proteins and calmodulin in chromaffin cell functions is discussed.  相似文献   

13.
The release of polypeptides in response to extracellular cues is a notable feature of endocrine, exocrine and neuronal cells, and is based on regulated exocytosis via dense-core secretory granules. There is interest in this mode of secretion because of its importance in human physiology and also because regulated exocytosis reflects a complex pathway of membrane traffic that includes compartment-specific reversible macromolecular assembly, coat-independent vesicle budding, maturation/remodeling of both lumenal and membrane constituents, and stimulus-dependent membrane fusion. Secretory granules are absent in most unicellular model organisms but are highly developed in the Ciliates, which therefore offer attractive systems to study these phenomena. In Tetrahymena thermophila , biochemical and genetic approaches have begun yielding insights into issues ranging from control of granule core assembly, based on reverse genetic analysis of granule cargo, to questions about factors involved in granule biogenesis, based on random mutational approaches.  相似文献   

14.
PC12 cells, a cell line derived from a rat pheochromocytoma, have both regulated and constitutive secretory pathways. Regulated secretion occurs via large dense core granules, which are related to chromaffin granules and are abundant in these cells. In addition, PC12 cells also contain small electron-lucent vesicles, whose numbers increase in response to nerve growth factor and which may be related to cholinergic synaptic vesicles. These could characterize a second regulated secretory pathway. We have investigated the trafficking of protein markers for both these organelles. We have purified and characterized the large dense core granules from these cells using sequential velocity and equilibrium gradients. We demonstrate the copurification of the major PC12 soluble regulated secretory protein (secretogranin II) with this organelle. As a marker for the synaptic vesicle-like organelles in this system, we have used the integral membrane glycoprotein p38 or synaptophysin. We show that the p38-enriched fraction of PC12 cells comigrates with rat brain synaptic vesicles on an equilibrium gradient. We also demonstrate that p38 purifies away from the dense core granules; less than 5% of this protein is found in our dense granule fraction. Finally we show that p38 does not pass through the dense granule fraction in pulse-chase experiments. These results rule out the possibility of p38 reaching the small clear vesicles via mature dense granules and imply that these cells may have two independently derived regulated pathways.  相似文献   

15.
General mRNA processing factors are traditionally thought to function only in the control of global gene expression. Here we show that the Sm proteins, core components of the splicesome, also regulate germ granules during early C. elegans development. Germ granules are large cytoplasmic particles that localize to germ cells and their precursors during embryogenesis of diverse organisms. In C. elegans, germ granules, called P granules, are segregated to the germline precursor cells during embryogenesis by asymmetric cell division, and they remain in germ cells at all stages of development. We found that at least some Sm proteins are components of P granules. Moreover, disruption of Sm activity caused defects in P granule localization to the germ cell precursors during early embryogenesis. In contrast, loss of other splicing factor activities had no effect on germ granule control in the embryo. These observations suggest that the Sm proteins control germ granule integrity and localization in the early C. elegans embryo and that this role is independent of pre-mRNA splicing. Thus, a highly conserved splicing factor may have been adapted to control both snRNP biogenesis and the localization of components important for germ cell function.  相似文献   

16.
We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic β cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.  相似文献   

17.
All plants and green algae synthesize starch through the action of the same five classes of elongation enzymes: the starch synthases. Arabidopsis mutants defective for the synthesis of the soluble starch synthase IV (SSIV) type of elongation enzyme have now been characterized. The mutant plants displayed a severe growth defect but nonetheless accumulated near to normal levels of polysaccharide storage. Detailed structural analysis has failed to yield any change in starch granule structure. However, the number of granules per plastid has dramatically decreased leading to a large increase in their size. These results, which distinguish the SSIV mutants from all other mutants reported to date, suggest a specific function of this enzyme class in the control of granule numbers. We speculate therefore that SSIV could be selectively involved in the priming of starch granule formation.  相似文献   

18.
As early endosomes mature, the SAND-1/CCZ-1 complex acts as a guanine nucleotide exchange factor (GEF) for RAB-7 to promote the activity of its effector, HOPS, which facilitates late endosome–lysosome fusion and the consumption of AP-3–containing vesicles. We show that CCZ-1 and the HOPS complex are essential for the biogenesis of gut granules, cell type–specific, lysosome-related organelles (LROs) that coexist with conventional lysosomes in Caenorhabditis elegans intestinal cells. The HOPS subunit VPS-18 promotes the trafficking of gut granule proteins away from lysosomes and functions downstream of or in parallel to the AP-3 adaptor. CCZ-1 also acts independently of AP-3, and ccz-1 mutants mistraffic gut granule proteins. Our results indicate that SAND-1 does not participate in the formation of gut granules. In the absence of RAB-7 activity, gut granules are generated; however, their size and protein composition are subtly altered. These observations suggest that CCZ-1 acts in partnership with a protein other than SAND-1 as a GEF for an alternate Rab to promote gut granule biogenesis. Point mutations in GLO-1, a Rab32/38-related protein, predicted to increase spontaneous guanine nucleotide exchange, specifically suppress the loss of gut granules by ccz-1 and glo-3 mutants. GLO-3 is known to be required for gut granule formation and has homology to SAND-1/Mon1–related proteins, suggesting that CCZ-1 functions with GLO-3 upstream of the GLO-1 Rab, possibly as a GLO-1 GEF. These results support LRO formation occurring via processes similar to conventional lysosome biogenesis, albeit with key molecular differences.  相似文献   

19.
G R Bowman  A P Turkewitz 《Genetics》2001,159(4):1605-1616
The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation.  相似文献   

20.
The eye pigment system in Drosophila melanogaster has been studied with the electron microscope. Details in the development of pigment granules in wild type flies and in three eye color mutants are described. Four different types of pigment granules have been found. Type I granules, which carry ommochrome pigment and occur in both primary and secondary pigment cells of ommatidia, are believed to develop as vesicular secretions by way of the Golgi apparatus. The formation of Type II granules, which are restricted to the secondary pigment cells and contain drosopterin pigments, involves accumulation of 60- to 80-A fibers producing an elliptical granule. Type III granules appear to be empty vesicles, except for small marginal areas of dense material; they are thought to be abnormal entities containing ommochrome pigment. Type IV granules are characteristic of colorless mutants regardless of genotype, and during the course of development they often contain glycogen, ribosomes, and show acid phosphatase activity; for these reasons and because of their bizarre and variable morphology, they are considered to be autophagic vacuoles. The 300-A particles commonly found in pigment cells are identified as glycogen on the basis of their morphology and their sensitivity to salivary digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号