首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Three strains of strictly anaerobic bacteria, isolated from the cecal contents of rats, have strict requirements for long-chain fatty acids. The effect of exogenous fatty acids on the growth and fatty acid composition of the bacteria was examined. Biohydrogenation of linoleic acid into octadecenoic acid was observed. These observations suggest that long-chain fatty acids in the intestine are factors in controlling the localization and the population levels of indigenous bacteria in vivo in rats.  相似文献   

2.
MLCTs, which are randomly interesterified triacylglycerol containing medium- and long-chain fatty acids in the same glycerol molecule, showed significantly higher acyl-CoA dehydrogenase activity when measured by using butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA as substrates than long-chain triacylglycerol one hour after a single administration to rats. These results suggest that not only medium-chain fatty acid oxidation, but also long-chain fatty acid oxidation were increased in the liver of rats administered with MLCT.  相似文献   

3.
MLCTs, which are randomly interesterified triacylglycerol containing medium- and long-chain fatty acids in the same glycerol molecule, showed significantly higher acyl-CoA dehydrogenase activity when measured by using butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA as substrates than long-chain triacylglycerol one hour after a single administration to rats. These results suggest that not only medium-chain fatty acid oxidation, but also long-chain fatty acid oxidation were increased in the liver of rats administered with MLCT.  相似文献   

4.
5.
beta-Ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called acetoacetyl-ACP synthase) encoded by the fabH gene is thought to catalyze the first elongation reaction (Claisen condensation) of type II fatty acid synthesis in bacteria and plant plastids. However, direct in vivo evidence that KAS III catalyzes an essential reaction is lacking, because no mutant organism deficient in this activity has been isolated. We report the first bacterial strain lacking KAS III, a fabH mutant constructed in the Gram-positive bacterium Lactococcus lactis subspecies lactis IL1403. The mutant strain carries an in-frame deletion of the KAS III active site region and was isolated by gene replacement using a medium supplemented with a source of saturated and unsaturated long-chain fatty acids. The mutant strain is devoid of KAS III activity and fails to grow in the absence of supplementation with exogenous long-chain fatty acids demonstrating that KAS III plays an essential role in cellular metabolism. However, the L. lactis fabH deletion mutant requires only long-chain unsaturated fatty acids for growth, a source of long-chain saturated fatty acids is not required. Because both saturated and unsaturated fatty acids are required for growth when fatty acid synthesis is blocked by biotin starvation (which prevents the synthesis of malonyl-CoA), another pathway for saturated fatty acid synthesis must remain in the fabH deletion strain. Indeed, incorporation of [1-14C]acetate into fatty acids in vivo showed that the fabH mutant retained about 10% of the fatty acid synthetic ability of the wild-type strain and that this residual synthetic capacity was preferentially diverted to the saturated branch of the pathway. Moreover, mass spectrometry showed that the fabH mutant retained low levels of palmitic acid upon fatty acid starvation. Derivatives of the fabH deletion mutant strain were isolated that were octanoic acid auxotrophs consistent with biochemical studies indicating that the major role of FabH is production of short-chain fatty acid primers. We also confirmed the essentiality of FabH in Escherichia coli by use of a plasmid-based gene insertion/deletion system. Together these results provide the first genetic evidence demonstrating that FabH conducts the major condensation reaction in the initiation of type II fatty acid biosynthesis in both Gram-positive and Gram-negative bacteria.  相似文献   

6.
Peroxisomes were isolated from liver tissue of control and clofibrate-treated adult male NMRI mice and Sprague-Dawley rats. Phospholipids, cholesterol, triglycerides and free fatty acids were measured in the peroxisomes. The fatty acid profiles of the phosphatidylethanolamine, the phosphatidylcholine, the triglyceride and the free fatty acid fractions were also analyzed. Phosphatidylethanolamine was the dominating phospholipid in peroxisomes from untreated animals. The fatty acid profiles of phosphatidylethanolamine, free fatty acids and triglycerides were similar for untreated mice and rats but differences between the species were observed in the pattern derived from phosphatidylcholine. Phosphatidylcholine was the most abundant phospholipid after clofibrate treatment. Clofibrate treatment caused an increase in the concentrations of phospholipids and unsaturated long-chain fatty acids and a decrease in the concentrations of triglycerides, free fatty acids, cholesterol and shorter saturated fatty acids.  相似文献   

7.
Rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3-depleted rats) display several features of the metabolic syndrome including hypertension and cardiac hypertrophy. This coincides with alteration of the cardiac muscle phospholipid and triacylglycerol fatty acid content and/or pattern. In the present study, the latter variables were measured in the cardiac endothelium of normal and omega3-depleted rats. Samples derived from four rats each were obtained from 16 female normal fed rats and three groups of 36-40 female fed omega3-depleted rats each aged 8-9, 15-16 and 22-23 weeks. At comparable mean age, the ratio between the square root of the total fatty acid content of phospholipids and cubic root of the total fatty acid content of triacylglycerols was lower in omega3-depleted rats than in control animals. The total fatty acid content of triacylglycerols was inversely related to their relative content in C20:4omega6. Other differences between omega3-depleted rats and control animals consisted in a lower content of long-chain polyunsaturated omega3 fatty acids in both phospholipids and triacylglycerols, higher content of long-chain polyunsaturated omega6 fatty acids in phospholipids, higher activity of delta9-desaturase (C16:0/C16:1omega7 and C18:0/C18:1omega9 ratios) and elongase [(C16:0 + C16:1omega7)/(C18:0 + C18:1omega9) and C20:4omega6/C22:4omega6 ratios], but impaired generation of C22:6omega3 from C22:5omega3 in the former rats. These findings support the view that cardiovascular perturbations previously documented in the omega3-depleted rats may involve impaired heart endothelial function.  相似文献   

8.
We have reported previously that randomly interesterified triacylglycerol containing medium- and long-chain fatty acids in the same glycerol molecule (MLCT) resulted in significantly lower body fat accumulation and higher hepatic fatty acid oxidation than from long-chain triacylglycerol (LCT) in rats. To understand the metabolic changes occurring in white adipose tissue, the fatty acid oxidation and synthesis, and the adipocytokine level were measured in rats fed with MLCT or LCT for 2 weeks. In comparison with LCT, MLCT lowered not only the fatty acid synthase and glycerol-3-phosphate dehydrogenase activities in perirenal adipose tissue, but also the serum insulin and leptin levels, in addition to significantly reducing the body fat accumulation. In contrast, fatty acid oxidation measured as the carnitine palmitoyltransferase activity in the tissue was significantly higher in the MLCT-fed rats than in the LCT-fed rats. It seems that the altered fatty acid metabolism in adipose tissue per se was also responsible for the lower adiposity by dietary MLCT.  相似文献   

9.
The processes that govern the regulated transport of long-chain fatty acids across the plasma membrane are quite distinct compared to counterparts involved in the transport of hydrophilic solutes such as sugars and amino acids. These differences stem from the unique physical and chemical properties of long-chain fatty acids. To date, several distinct classes of proteins have been shown to participate in the transport of exogenous long-chain fatty acids across the membrane. More recent work is consistent with the hypothesis that in addition to the role played by proteins in this process, there is a diffusional component which must also be considered. Central to the development of this hypothesis are the appropriate experimental systems, which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both (i) exhibit saturable long-chain fatty acid transport at low ligand concentrations, (ii) have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus, and (iii) can be easily manipulated using the tools of molecular genetics. In both systems, central players in the process of fatty acid transport are fatty acid transport proteins (FadL or Fat1p) and fatty acyl coenzyme A (CoA) synthetase (FACS; fatty acid CoA ligase [AMP forming] [EC 6.2.1.3]). FACS appears to function in concert with FadL (bacteria) or Fat1p (yeast) in the conversion of the free fatty acid to CoA thioesters concomitant with transport, thereby rendering this process unidirectional. This process of trapping transported fatty acids represents one fundamental mechanism operational in the transport of exogenous fatty acids.  相似文献   

10.
Second generation rats depleted in long-chain polyunsaturated omega3 fatty acids display several features of the metabolic syndrome, including visceral obesity, liver steatosis, insulin resistance, hypertension, and cardiac hypertrophy. In the framework of an extensive study on such metabolic, hormonal and functional perturbations, the phospholipid fatty acid pattern and ex vivo metabolism of D-glucose were recently investigated in the soleus muscle of these omega3-depleted rats. The present study deals with the triglyceride fatty acid content and pattern of the soleus muscle in control animals and omega3-depleted rats. Some of the latter rats were injected intravenously 60-120 minutes before sacrifice with either an omega3 fatty acid-rich medium-chain triglyceride/fish oil emulsion (omega3-FO rats) or a control medium-chain triglyceride/olive oil emulsion (omega3-OO rats). The total fatty acid content of triglycerides was comparable in control and omega3-depleted rats and, in both cases, inversely related to their C20:4omega6 relative content. At variance with the situation found in control rats, no long-chain polyunsaturated omega3 fatty acid (C18:3omega3, C20:5omega3, C22:5omega3, C22:6omega3) was detected in the omega3-depleted rats. Unexpectedly, the triglyceride content in most long-chain polyunsaturated omega6 fatty acids (C18:2omega6, C20:3omega6, C20:4omega6 and C22:4omega6) had also decreased in the latter rats. Moreover, the activity of Delta9-desaturase was apparently increased in the omega3-depleted rats, as judged from the C16:1omega7/C16:0 and C18:1omega9/C18:0 ratios. The omega3-FO rats differed from omega3-OO rats by a lower contribution of C18:2omega6 metabolites (C18:3omega6, C20:3omega6, C20:4omega6 and C22:4omega6). These findings indicate that the prior injection of the medium-chain triglyceride/fish oil emulsion, known to increase the muscle phospholipid content in long-chain polyunsaturated omega3 fatty acids, may nevertheless accentuate the depletion in long-chain polyunsaturated omega6 fatty acids otherwise found in the triglycerides of omega3-depleted rats. Such a dual effect is reminiscent of that observed, under the same experimental conditions, for selected variables in D-glucose metabolism in the soleus muscle.  相似文献   

11.
The fatty acid transport protein (FATP) family is a group of proteins that are predicted to be components of specific fatty acid trafficking pathways. In mammalian systems, six different isoforms have been identified, which function in the import of exogenous fatty acids or in the activation of very long-chain fatty acids. This has led to controversy as to whether these proteins function as membrane-bound fatty acid transporters or as acyl-CoA synthetases, which activate long-chain fatty acids concomitant with transport. The yeast FATP orthologue, Fat1p, is a dual functional protein and is required for both the import of long-chain fatty acids and the activation of very long-chain fatty acids; these activities intrinsic to Fat1p are separable functions. To more precisely define the roles of the different mammalian isoforms in fatty acid trafficking, the six murine proteins (mmFATP1-6) were expressed and characterized in a genetically defined yeast strain, which cannot transport long-chain fatty acids and has reduced long-chain acyl-CoA synthetase activity (fat1Delta faa1Delta). Each isoform was evaluated for fatty acid transport, fatty acid activation (using C18:1, C20:4, and C24:0 as substrates), and accumulation of very long-chain fatty acids. Murine FATP1, -2, and -4 complemented the defects in fatty acid transport and very long-chain fatty acid activation associated with a deletion of the yeast FAT1 gene; mmFATP3, -5, and -6 did not complement the transport function even though each was localized to the yeast plasma membrane. Both mmFATP3 and -6 activated C20:4 and C20:4, while the expression of mmFATP5 did not substantially increase acyl-CoA synthetases activities using the substrates tested. These data support the conclusion that the different mmFATP isoforms play unique roles in fatty acid trafficking, including the transport of exogenous long-chain fatty acids.  相似文献   

12.
Lipopolysaccharides (LPSs) from a number of bacteria belonging to the alpha-2 subgroup of the class Proteobacteria were screened for the presence of 27-hydroxy-octacosanoic acid (27-OH-28:0). With few exceptions, most of the bacteria contained 27-OH-28:0 in their lipid A fractions. In addition, some of the bacteria contained other n-2-hydroxylated long-chain fatty acids hitherto not reported. The distribution of 27-OH-28:0 was restricted to the alpha-2 subgroup. LPSs from members of the other subgroups (the beta and gamma subgroups), including some well-characterized enterobacterial LPSs, were devoid of 27-OH-28:0. Our results indicate that the presence of n-2-hydroxylated long-chain fatty acids in LPSs might be used as a chemophylogenetical marker.  相似文献   

13.
Dicarboxylic acids are excreted in urine when fatty acid oxidation is increased (ketosis) or inhibited (defects in beta-oxidation) and in Reye's syndrome. omega-Hydroxylation and omega-oxidation of C6-C12 fatty acids were measured by mass spectrometry in rat liver microsomes and homogenates, and beta-oxidation of the dicarboxylic acids in liver homogenates and isolated mitochondria and peroxisomes. Medium-chain fatty acids formed large amounts of medium-chain dicarboxylic acids, which were easily beta-oxidized both in vitro and in vivo, in contrast to the long-chain C16-dicarboxylic acid, which was toxic to starved rats. Increment of fatty acid oxidation in rats by starvation or diabetes increased C6:C10 dicarboxylic acid ratio in rats fed medium-chain triacylglycerols, and increased short-chain dicarboxylic acid excretion in urine in rats fed medium-chain dicarboxylic acids. Valproate, which inhibits fatty acid oxidation and may induce Reye like syndromes, caused the pattern of C6-C10-dicarboxylic aciduria seen in beta-oxidation defects, but only in starved rats. It is suggested, that the origin of urinary short-chain dicarboxylic acids is omega-oxidized medium-chain fatty acids, which after peroxisomal beta-oxidation accumulate as C6-C8-dicarboxylic acids. C10-C12-dicarboxylic acids were also metabolized in the mitochondria, but did not accumulate as C6-C8-dicarboxylic acids, indicating that beta-oxidation was completed beyond the level of adipyl CoA.  相似文献   

14.
Effects of Long-Chain Fatty Acids on Growth of Rumen Bacteria   总被引:5,自引:2,他引:3       下载免费PDF全文
The effects of low concentrations of long-chain fatty acids (palmitic, stearic, oleic, and vaccenic) on the growth of seven species (13 strains) of rumen bacteria were investigated. Except for Bacteroides ruminicola and several strains of Butyrivibrio fibrisolvens, bacterial growth was not greatly affected by either palmitic or stearic acids. In contrast, growth of Selenomonas ruminantium, B. ruminicola, and one strain of B. fibrisolvens was stimulated by oleic acid, whereas the cellulolytic species were markedly inhibited by this acid. Vaccenic acid (trans Δ11 18:1) had far less inhibitory effect on the cellulolytic species than oleic acid (cis Δ9 18:1). Inclusion of powdered cellulose in the medium appeared to reverse both inhibitory and stimulatory effects of added fatty acids. However, there was little carry-over effect observed when cells were transferred from a medium with fatty acids to one without. Considerable variation in response to added fatty acids was noted among five strains of B. fibrisolvens. In general, exogenous long-chain fatty acids appear to have little, if any, energy-sparing effect on the growth of rumen bacteria.  相似文献   

15.
Rat adipocytes were used in vivo to compare the esterification of exogenous fatty acids and fatty acids formed de novo from glucose or acetate. Pure single fatty acids added to the medium were esterified at comparable rates but marked differences were observed when the same acids were supplied as components of a fatty acid mixture of a composition similar to that in the tissue. Fatty acids synthesised de novo from acetate by adipocytes in a medium containing high concentrations of acetate were located predominantly in diacylglycerols. The effect was most marked with adipocytes from older rats and was enhanced by the presence of exogenous long-chain fatty acids. Exogenous oleic acid was esterified predominantly into triacylglycerols at all concentrations of acetate. No such accumulation of endogenously-synthesised fatty acids in diacylglycerols occurred when glucose was the precursor for fatty acid synthesis. The diacylglycerols formed were almost entirely of the sn-1,2-configuration.  相似文献   

16.
The activity and mRNA concentrations of two lipogenic enzymes, fatty-acid synthase and acetyl-CoA carboxylase were measured in the liver and white adipose tissue of rats weaned to a carbohydrate-rich diet containing either long-chain or medium-chain fatty acids, and compared to those of rats weaned on a diet containing less than 1% (total energy) fat (high-carbohydrate diet). In the liver, the diet containing long-chain fatty acids inhibited the increase of both lipogenic-enzyme mRNA concentrations and activities seen at weaning on the high-carbohydrate diet but did not prevent the decrease in phosphoenolpyruvate carboxykinase mRNA and activity. In contrast, the diet containing medium-chain fatty acids induced a slower but finally similar increase in lipogenic-enzyme mRNA concentrations and activities. In adipose tissue, a similar trend was observed, although the inhibitory effect of the diet containing long-chain fatty acids was considerably less marked than in liver. It is concluded that medium-chain and long-chain fatty acids have not the same inhibitory potency of the gene expression of lipogenic enzymes, and that long-chain fatty acids have a more marked effect in the liver.  相似文献   

17.
We investigated the role of energy supplied by long-chain fatty acid oxidation in rat platelet function. Inhibition of the mitochondrial uptake of long-chain fatty acids was achieved by treating rats with 2-tetradecylglycidic acid (TDGA), a potent inhibitor of the overt form of carnitine palmitoyltransferase (CPT-I). The maximum aggregation rate (MAR), CPT-I activity, lactate production, oxygen consumption and adenine nucleotide content of isolated rat platelets were then studied in vitro. 4 h after the in vivo administration of TDGA, the CPT-I activity in saponin-permeabilized platelets was nearly completely inhibited along with a significant reduction in the MAR induced by ADP, thrombin and ionophore A23187. The ATP level, adenylate energy charge (ATP + 1/2 ADP)/(ATP + ADP + AMP) and ATP/ADP ratio in the platelet cytoplasmic pool were also reduced. Platelets from TDGA-treated rats showed lower oxygen consumption rates in both the basal respiratory and oxygen burst states. These results indicate that mitochondrial long-chain fatty acid oxidation coupled to oxidative phosphorylation is an important energy source in rat platelets and is probably involved in the maintenance of platelet function. Enhanced in vitro lactate production in platelets from TDGA-treated rats may have resulted from a compensatory increase in glycolysis which only partly compensated for impaired long-chain fatty acid oxidation.  相似文献   

18.
Growth, amino acid transport, and oxygen consumption of Escherichia coli and Salmonella typhimurium are inhibited by short-chain (C(2)-C(6)) but not by medium or long-chain fatty acids (C(10)-C(18)) at concentrations at which these processes are completely inhibited in Bacillus subtilis. The resistance of gram-negative organisms is not correlated with their ability to metabolize fatty acids, since an E. coli mutant unable to transport oleic acid is still resistant. However, mutants of both E. coli and S. typhimurium in which the lipopolysaccharide layer does not contain the residues beyond the 2-keto-3-deoxyoctonate core are inhibited by medium (C(10)) but not by long-chain (C(18)) fatty acids. Furthermore, removal of a portion of the lipopolysaccharide layer by ethylenediaminetetraacetate treatment renders the organisms sensitive to medium and partially sensitive to long-chain fatty acids. The intact lipopolysaccharide layer of gram-negative organisms apparently screens the cells against medium and long-chain fatty acids and prevents their accumulation on the inner cell membrane (site of amino acid transport) at inhibitory concentrations. These results are relevant to the use of antimicrobial food additives, and they allow the characterization of gram-positive versus gram-negative bacteria and their lipopolysaccharide mutants.  相似文献   

19.
Studies evaluating the uptake of long-chain fatty acids in Caulobacter crescentus are consistent with a protein-mediated process. Using oleic acid (C18:1) as a substrate, fatty acid uptake was linear for up to 15 min. This process was saturable giving apparent Vmax and Km values of 374 pmol oleate transported/min/mg total protein and 61 μM oleate, respectively, consistent with the notion that one or more proteins are likely involved. The rates of fatty acid uptake in C. crescentus were comparable to those defined in Escherichia coli. Uncoupling the electron transport chain inhibited oleic acid uptake, indicating that like the long-chain fatty acid uptake systems defined in other gram-negative bacteria, this process is energy-dependent in C. crescentus. Long-chain acyl CoA synthetase activities were also evaluated to address whether vectorial acylation represented a likely mechanism driving fatty acid uptake in C. crescentus. These gram-negative bacteria have considerable long-chain acyl CoA synthetase activity (940 pmol oleoyl CoA formed/min/mg total protein), consistent with the notion that the formation of acyl CoA is coincident with uptake. These results suggest that long-chain fatty acid uptake in C. crescentus proceeds through a mechanism that is likely to involve one or more proteins.  相似文献   

20.
In our previous studies, medium- and long-chain triacylglycerols (MLCT), randomly interesterified triacylglycerols containing medium-chain and long-chain fatty acids in the same glycerol molecule, significantly reduced body fat accumulation in humans and rats. To clarify mechanism(s) for this effect of MLCT, we measured energy expenditure and hepatic fatty acid metabolism in rats by comparison with long-chain triacylglycerols (LCT) or medium-chain triacylglycerols (MCT). MLCT, compared with LCT, showed significantly lower body fat accumulation, higher 24-h energy expenditure and acyl-CoA dehydrogenase activity measured using octanoyl-CoA as a substrate, and similar lipogenic activity. MCT, compared with LCT, showed significantly higher energy expenditure, but fat accumulation was comparable. Additionally, MCT exhibited significantly higher lipogenic activity than the other oils. These data suggest that enhancement of energy expenditure and medium-chain fatty acids (MCFA) oxidation without activating de novo lipogenesis are responsible at least for the lower body fat accumulation in rats fed MLCT. The activation of hepatic lipogenesis by excessive intake of MCFA might counteract their preventive effects on body fat accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号