共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of CD1d2 on thymocytes is not sufficient for the development of NK T cells in CD1d1-deficient mice 总被引:1,自引:0,他引:1
Chen YH Wang B Chun T Zhao L Cardell S Behar SM Brenner MB Wang CR 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(8):4560-4566
CD1 is an MHC class I-like molecule that has been conserved throughout mammalian evolution. Unlike MHC class I molecules, CD1 can present unique nonprotein antigens to T cells. The murine CD1 locus contains two highly homologous genes, CD1d1 and CD1d2. CD1d1 is essential for the development of a major subset of NK T cells that promptly secrete IL-4 following activation. However, the function of CD1d2 has not yet been demonstrated. In the present study, we examined the expression of CD1d2 in CD1d1-deficient (CD1d1 degrees) mice with the anti-CD1 Ab 3H3. Unlike CD1d1, which is expressed by all lymphocytes, CD1d2 can be detected only on the surface of thymocytes. To determine whether CD1d2 can select a unique subset of NK T cells, we compared the remnant population of NK T cells in CD1d1 degrees and CD1d1, CD1d2-double deficient (CD1d1 degrees CD1d2 degrees) mice. No significant difference in the number of NK T cells and cytokine secretion capacity can be detected between CD1d1 degrees and CD1d1 degrees CD1d2 degrees mice, indicating that CD1d2 cannot substitute for CD1d1 in NK T cell development. The inability of CD1d2 to select NK T cells is not due to the structural constraints of CD1d2 since CD1d2-transfected cells can be recognized by both NK T cell hybridomas and freshly isolated NK T cells. Given the structural similarities, it is possible that the low levels of surface expression and limited tissue distribution of CD1d2 may prevent it from functioning in the selection and expansion of NK T cells. 相似文献
2.
Robert Faris Yang-Yi Fan Alejandra De Angulo Robert S. Chapkin Linda A. deGraffenried Christopher A. Jolly 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(10):1475-1482
Glycerol-3-phosphate acyltransferase-1 is the first rate limiting step in de novo glycerophospholipid synthesis. We have previously demonstrated that GPAT-1 deletion can significantly alter T cell function resulting in a T cell phenotype similar to that seen in aging. Recent studies have suggested that changes in the metabolic profile of T cells are responsible for defining specific effector functions and T cell subsets. Therefore, we determined whether T cell dysfunction in GPAT-1 −/− CD4+ T cells could be explained by changes in cellular metabolism. We show here for the first time that GPAT-1 −/− CD4+ T cells exhibit several key metabolic defects. Striking decreases in both the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were observed in GPAT-1 −/− CD4+ T cells following CD3/CD28 stimulation indicating an inherent cellular defect in energy production. In addition, the spare respiratory capacity (SRC) of GPAT-1 −/− CD4 + T cells, a key indicator of their ability to cope with mitochondrial stress was significantly decreased. We also observed a significant reduction in mitochondrial membrane potential in GPAT-1 −/− CD4+ T cells compared to their WT counterparts, indicating that GPAT-1 deficiency results in altered or dysfunctional mitochondria. These data demonstrate that deletion of GPAT-1 can dramatically alter total cellular metabolism under conditions of increased energy demand. Furthermore, altered metabolic response following stimulation may be the defining mechanism underlying T cell dysfunction in GPAT-1 −/− CD4+ T cells. Taken together, these results indicate that GPAT-1 is essential for the response to the increased metabolic demands associated with T cell activation. 相似文献
3.
Huang MM Borszcz P Sidobre S Kronenberg M Kane KP 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(9):5304-5312
NK cells destroy microbe-infected cells while sparing healthy cells, and are controlled, in part, by inhibitory receptors specific for class I Ag-presenting molecules. CD1d1, a beta(2)-microglobulin-associated class I-like molecule, binds glycolipids and stimulates NKT cells. We previously demonstrated that target cell lysis by IL-2-activated mouse NK cells is inhibited by target cell expression of CD1d1, suggesting that IL-2-activated NK cells may express a CD1d1-specific inhibitory receptor. We now report that a significant subset of mouse IL-2-activated NK cells specifically binds cell size beads displaying either naturally expressed or recombinant CD1d1. In contrast, although tetramers of soluble recombinant CD1d1 loaded with alpha-galactosylceramide identify NKT cells, binding of this reagent to resting or IL-2-activated NK cells was undetectable, even with activated NK cells sorted with CD1d1 beads. Cytotoxicity by the CD1d1 bead-separated NK subset was strongly inhibited by CD1d1, compared with the NK cell subset not bound to CD1d1 beads. An Ab that blocks NKT cell recognition of CD1d1 also reverses CD1d1 inhibition of NK lysis, suggesting that TCRs of NKT cells and NK inhibitory receptor(s) may interact with a similar site on CD1d1. These results provide direct evidence for a physical interaction of NK cells with CD1d1, mediated by a functional, CD1d1-specific low-affinity inhibitory NK receptor. Display of ligands on cell size beads to maximize multivalent interaction may offer an alternative approach to examine NK cell receptor-ligand interactions, particularly those of lower expression and/or lower affinity/avidity that may go undetected using tetrameric reagents. 相似文献
4.
CARMA1 is necessary for optimal T cell responses in a murine model of allergic asthma 总被引:1,自引:0,他引:1
Ramadas RA Roche MI Moon JJ Ludwig T Xavier RJ Medoff BD 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(12):6197-6207
CARMA1 is a lymphocyte-specific scaffold protein necessary for T cell activation. Deletion of CARMA1 prevents the development of allergic airway inflammation in a mouse model of asthma due to a defect in naive T cell activation. However, it is unknown if CARMA1 is important for effector and memory T cell responses after the initial establishment of inflammation, findings that would be more relevant to asthma therapies targeted to CARMA1. In the current study, we sought to elucidate the role of CARMA1 in T cells that have been previously activated. Using mice in which floxed CARMA1 exons can be selectively deleted in T cells by OX40-driven Cre recombinase (OX40(+/Cre)CARMA1(F/F)), we report that CD4(+) T cells from these mice have impaired T cell reactivation responses and NF-κB signaling in vitro. Furthermore, in an in vivo recall model of allergic airway inflammation that is dependent on memory T cell function, OX40(+/Cre)CARMA1(F/F) mice have attenuated eosinophilic airway inflammation, T cell activation, and Th2 cytokine production. Using MHC class II tetramers, we demonstrate that the development and maintenance of Ag-specific memory T cells is not affected in OX40(+/Cre)CARMA1(F/F) mice. In addition, adoptive transfer of Th2-polarized OX40(+/Cre)CARMA1(F/F) Ag-specific CD4(+) T cells into wild-type mice induces markedly less airway inflammation in response to Ag challenge than transfer of wild-type Th2 cells. These data demonstrate a novel role for CARMA1 in effector and memory T cell responses and suggest that therapeutic strategies targeting CARMA1 could help treat chronic inflammatory disorders such as asthma. 相似文献
5.
CD1 mediated T cell recognition of glycolipids 总被引:2,自引:0,他引:2
Specialized subsets of T lymphocytes can distinguish the carbohydrate portions of microbial and self-glycolipids when they are presented by proteins in the CD1 family of antigen presenting molecules. Recent immunochemical and structural analyses indicate that the chemical composition of the presented carbohydrate, together with its precise orientation above the CD1 binding groove, determines if a particular T cell is activated. More recently, however, it has been shown that the lipid backbone of the glycolipid, buried inside the CD1 protein, also can have an impact on T cell activation. While glycolipid recognition is a relatively new category of T cell specificity, the powerful combination of microbial antigen discovery and structural biochemistry has provided great insight into the mechanism of carbohydrate recognition. 相似文献
6.
7.
Seth S Maier MK Qiu Q Ravens I Kremmer E Förster R Bernhardt G 《Biochemical and biophysical research communications》2007,364(4):959-965
The CD155 ligand CD96 is an immunoglobulin-like protein tentatively allocated to the repertoire of human NK receptors. We report here that the CD96/CD155-interaction is preserved between man and mouse although both receptors are only moderately conserved in amino acid sequence. Moreover, murine CD96 (mCD96) binds to nectin-1, a receptor related to CD155. Applying newly generated monoclonal antibodies specifically recognizing mCD96, an expression profile is revealed resembling closely that of human CD96 (hCD96) on cells of hematopoietic origin. A panel of anti-mCD96 but also recently established anti-mCD155 antibodies effectively prevents formation of CD96/CD155-complexes. This was exploited to demonstrate that the only available receptor for mCD96 present on thymocytes is mCD155. Moreover, T cell adhesion to insect cells expressing mCD155 is blocked by these antibodies depending on the T cell subtype. These results suggest a function of the CD96/CD155-adhesion system in T cell biology. 相似文献
8.
Yamaji O Nagaishi T Totsuka T Onizawa M Suzuki M Tsuge N Hasegawa A Okamoto R Tsuchiya K Nakamura T Arase H Kanai T Watanabe M 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(6):2524-2536
We previously reported that IL-7(-/-)RAG(-/-) mice receiving naive T cells failed to induce colitis. Such abrogation of colitis may be associated with not only incomplete T cell maintenance due to the lack of IL-7, but also with the induction of colitogenic CD4(+) T cell apoptosis at an early stage of colitis development. Moreover, NK cells may be associated with the suppression of pathogenic T cells in vivo, and they may induce apoptosis of CD4(+) T cells. To further investigate these roles of NK cells, RAG(-/-) and IL-7(-/-)RAG(-/-) mice that had received naive T cells were depleted of NK cells using anti-asialo GM1 and anti-NK1.1 Abs. NK cell depletion at an early stage, but not at a later stage during colitogenic effector memory T cell (T(EM)) development, resulted in exacerbated colitis in recipient mice even in the absence of IL-7. Increased CD44(+)CD62L(-) T(EM) and unique CD44(-)CD62L(-) T cell subsets were observed in the T cell-reconstituted RAG(-/-) recipients when NK cells were depleted, although Fas, DR5, and IL-7R expressions in this subset differed from those in the CD44(+)CD62L(-) T(EM) subset. NK cell characteristics were the same in the presence or absence of IL-7 in vitro and in vivo. These results suggest that NK cells suppress colitis severity in T cell-reconstituted RAG(-/-) and IL-7(-/-)RAG(-/-) recipient mice through targeting of colitogenic CD4(+)CD44(+)CD62L(-) T(EM) and, possibly, of the newly observed CD4(+)CD44(-)CD62L(-) subset present at the early stage of T cell development. 相似文献
9.
Isenberg JS Ridnour LA Dimitry J Frazier WA Wink DA Roberts DD 《The Journal of biological chemistry》2006,281(36):26069-26080
CD36 is necessary for inhibition of some angiogenic responses by the matricellular glycoprotein thrombospondin-1 and is therefore assumed to be the receptor that mediates its anti-angiogenic activities. Although ligation of CD36 by antibodies, recombinant type 1 repeats of thrombospondin-1, or CD36-binding peptides was sufficient to inhibit nitric oxide (NO)-stimulated responses in both endothelial and vascular smooth muscle cells, picomolar concentrations of native thrombospondin-1 similarly inhibited NO signaling in vascular cells from wild-type and CD36-null mice. Ligation of the thrombospondin-1 receptor CD47 by recombinant C-terminal regions of thrombospondin-1, thrombospondin-1 peptides, or CD47 antibodies was also sufficient to inhibit NO-stimulated phenotypic responses and cGMP signaling in vascular cells. Thrombospondin-1 did not inhibit NO signaling in CD47-null vascular cells or NO-stimulated vascular outgrowth from CD47-null muscle explants in three-dimensional cultures. Furthermore, the CD36-binding domain of thrombospondin-1 and anti-angiogenic peptides derived from this domain failed to inhibit NO signaling in CD47-null cells. Therefore, ligation of either CD36 or CD47 is sufficient to inhibit NO-stimulated vascular cell responses and cGMP signaling, but only CD47 is necessary for this activity of thrombospondin-1 at physiological concentrations. 相似文献
10.
Wright HV Bailey D Kashyap M Kepley CL Drutskaya MS Nedospasov SA Ryan JJ 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(4):2114-2121
Mouse mast cell development and survival are largely controlled by the cytokines IL-3 and stem cell factor (SCF). We have found that IL-3 stimulation of bone marrow cells induces the production of TNF via a PI3K- and MAPK kinase/ERK-dependent pathway. Specifically, Mac-1-positive cells were responsible for TNF production, which peaked on days 7-10 of culture and decreased rapidly thereafter. The importance of IL-3-induced TNF secretion was demonstrated by the failure of TNF-deficient bone marrow cells to survive for >3 wk when cultured in IL-3 and SCF, a defect that was reversed by the addition of soluble TNF. The development of human mast cells from bone marrow progenitors was similarly hampered by the addition of TNF-blocking Abs. Cell death was due to apoptosis, which occurred with changes in mitochondrial membrane potential and caspase activation. Apoptosis appeared to be due to loss of IL-3 signaling, because TNF-deficient cells were less responsive than their wild-type counterparts to IL-3-mediated survival. In vitro cultured mast cells from TNF-deficient mice also demonstrated reduced expression of the high affinity IgE receptor, which was restored to normal levels by the addition of soluble TNF. Finally, TNF-deficient mice demonstrated a 50% reduction in peritoneal mast cell numbers, indicating that TNF is an important mast cell survival factor both in vitro and in vivo. 相似文献
11.
Kaur S Kuznetsova SA Pendrak ML Sipes JM Romeo MJ Li Z Zhang L Roberts DD 《The Journal of biological chemistry》2011,286(17):14991-15002
Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent M(r) > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent M(r) 230,000) and CD47 (apparent M(r) > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser(64) and Ser(79). Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser(64). 相似文献
12.
13.
Kunisaki Y Tanaka Y Sanui T Inayoshi A Noda M Nakayama T Harada M Taniguchi M Sasazuki T Fukui Y 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(8):4640-4645
Mouse CD1d-restricted Valpha14 NKT cells are a unique subset of lymphocytes, which play important roles in immune regulation, tumor surveillance and host defense against pathogens. DOCK2, a mammalian homolog of Caenorhabditis elegans CED-5 and Drosophila melanogaster myoblast city, is critical for lymphocyte migration and regulates T cell responsiveness through immunological synapse formation, yet its role in Valpha14 NKT cells remains unknown. We found that DOCK2 deficiency causes marked reduction of Valpha14 NKT cells in the thymus, liver, and spleen. When alpha-galactosylceramide (alpha-GalCer), a ligand for Valpha14 NKT cells, was administrated, cytokine production was scarcely detected in DOCK2-deficient mice, suggesting that DOCK2 deficiency primarily affects generation of Valpha14 NKT cells. Supporting this idea, staining with CD1d/alpha-GalCer tetramers revealed that CD44- NK1.1- Valpha14 NKT cell precursors are severely reduced in the thymuses of DOCK2-deficient mice. In addition, studies using bone marrow chimeras indicated that development of Valpha14 NKT cells requires DOCK2 expression in T cell precursors, but not in APCs. These results indicate that DOCK2 is required for positive selection of Valpha14 NKT cells in a cell-autonomous manner, thereby suggesting that avidity-based selection also governs development of this unique subset of lymphocytes in the thymus. 相似文献
14.
Outram SV Grimwade D Crompton T 《Biochemical and biophysical research communications》2001,281(2):409-415
Tissue specific and developmental expression of the CD2 gene is tightly regulated during T cell development. DNase I hypersensitivity analysis has revealed the presence of two sites (DHS1 and 2) located 5' to the CD2 gene which have been reported to be implicated in the developmental regulation of expression of CD2. The location of DHS2 marks the position of the minimal promoter whereas DHS1 is located approximately 1800 bp upstream. We show that repressor and derepressor activities are contained within the region of DNA marked by DHS1. The repressor is capable of regulating homologous and heterologous promoters regardless of orientation. This activity is entirely dependent upon the presence of an AP-2 binding site as mutation of this site resulted in a loss of repressor activity. A nuclear factor found in Jurkat cells specifically binds this site but was shown to be serologically distinct from AP-2. 相似文献
15.
Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones 总被引:52,自引:0,他引:52
We have previously shown that at least two types of Lyt-1+, Lyt-2-, L3T4+ helper T cell clones can be distinguished in vitro by different patterns of lymphokine secretion and by different forms of B cell help. Evidence is presented here to show that one type of helper T cell clone (TH1) causes delayed-type hypersensitivity (DTH) when injected with the appropriate antigen into the footpads of naive mice. The antigen-specific, major histocompatability complex (MHC)-restricted footpad swelling reaction peaked at approximately 24 hr. Footpad swelling was induced by all TH1 clones tested so far, including clones specific for soluble, particulate, or allogeneic antigens. In contrast, local transfer of TH2 cells and antigen did not produce a DTH reaction, even when supplemented with syngeneic spleen accessory cells. Similarly, local transfer of an alloreactive cytotoxic T lymphocyte clone into appropriate recipients did not produce DTH. The requirements for the DTH reaction induced by TH1 cells were investigated further by using TH1 clones with dual specificity for both foreign antigens and M1s antigens. Although these clones responded in vitro to either antigen + syngeneic presenting cells, or M1s disparate spleen cells, they responded in vivo only to antigen + MHC and did not cause footpad swelling in an M1s-disparate mouse in the absence of antigen. Moreover, in vitro preactivation of TH1 or TH2 cells with the lectin concanavalin A was insufficient to induce DTH reactions upon subsequent injection into footpads. From these results, we conclude that the lack of DTH given by TH2 clones in vivo could be due to the inability of the TH2 cells to produce the correct mediators of DTH, or to a lack of stimulation of TH2 clones in the footpad environment. 相似文献
16.
Priatel JJ Chen X Dhanji S Abraham N Teh HS 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(3):1470-1480
TCR signaling plays a governing role in both the survival and differentiation of bipotent double-positive thymocytes into the CD4(+) and CD8(+) single-positive T cell lineages. A central mediator of this developmental program is the small GTPase Ras, emitting cytoplasmic signals through downstream MAPK pathways and eventually affecting gene expression. TCR signal transduction orchestrates the activation of Ras by integrating at least two Ras-guanyl nucleotide exchange factors, RasGRP1 and Sos. In this study, we have characterized the relationship between RasGRP1 function and its potential roles in promoting ERK activity, cell survival, maturation, and lineage commitment. Investigations on RasGRP1(-/-) mice expressing a transgenic (Tg) MHC class II-restricted TCR revealed that the development of CD4 T cells expressing this Tg TCR is completely dependent on RasGRP1. Unexpectedly, a small number of functional CD8 single-positive thymocytes expressing the Tg MHC class II-restricted TCR exists in mutant mice. In addition, RasGRP1(-/-) double-positive thymocytes exhibit marked deficits in TCR-stimulated up-regulation of the positive selection marker CD69 and the antiapoptotic protein Bcl-2, whereas CD5 induction is unaffected. To evaluate the role of RasGRP1 in providing cellular survival signaling, we enforced Bcl-2 expression in RasGRP1(-/-) thymocytes. These studies demonstrate that RasGRP1 function cannot be fully complemented by Tg Bcl-2 expression. Therefore, we propose that RasGRP1 transmits differentiation signaling critically required for CD4 T cell development. 相似文献
17.
Although CD28 is the principal T cell costimulatory molecule for the T cell receptor, a number of other cell surface proteins have costimulatory functions and perform specific roles in different contexts. Here we analyzed the mechanism of CD99 costimulation of the T cell receptor. Cooperation of CD99 engagement with suboptimal TCR/CD3 signals resulted in greatly enhanced CD4+ T cell proliferation. CD99 costimulation also led to elevated expression of CD25 and GM1 on the CD4+ T cell surface within 3 days. In Jurkat TAg cells, CD99 costimulation led to increased apoptosis compared to stimulation with CD3 or CD99 alone. CD99 costimulation also augmented activation of MAP kinases, especially of JNK, and increased AP-1 activation was also observed using a luciferase reporter assay. These results show that CD99 has a costimulatory function for T cells and acts by a mechanism distinct from CD28. 相似文献
18.
19.
20.
Swati Iyer Yash Chhabra Tracey J. Harvey Richard Wang Han Sheng Chiu A. G. Smith Walter G. Thomas David J. Pennisi Michael Piper 《Journal of molecular histology》2017,48(1):53-61
Endothelial cells form a critical component of the coronary vasculature, yet the factors regulating their development remain poorly defined. Here we reveal a novel role for the transmembrane protein CRIM1 in mediating cardiac endothelial cell development. In the absence of Crim1 in vivo, the coronary vasculature is malformed, the number of endothelial cells reduced, and the canonical BMP pathway dysregulated. Moreover, we reveal that CRIM1 can bind IGFs, and regulate IGF signalling within endothelial cells. Finally, loss of CRIM1 from human cardiac endothelial cells results in misregulation of endothelial genes, predicted by pathway analysis to be involved in an increased inflammatory response and cytolysis, reminiscent of endothelial cell dysfunction in cardiovascular disease pathogenesis. Collectively, these findings implicate CRIM1 in endothelial cell development and homeostasis in the coronary vasculature. 相似文献