首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA repair is essential for combatting the adverse effects of damage to the genome. One example of base damage is O(6)-methylguanine (O(6)mG), which stably pairs with thymine during replication and thereby creates a promutagenic O(6)mG:T mismatch. This mismatch has also been linked with cellular toxicity. Therefore, in the absence of repair, O(6)mG:T mismatches can lead to cell death or result in G:C-->A:T transition mutations upon the next round of replication. Cysteine thiolate residues on the Ada and Ogt methyltransferase (MTase) proteins directly reverse the O(6)mG base damage to yield guanine. When a cytosine is opposite the lesion, MTase repair restores a normal G:C pairing. However, if replication past the lesion has produced an O(6)mG:T mismatch, MTase conversion to a G:T mispair must still undergo correction to avoid mutation. Two mismatch repair pathways in E. coli that convert G:T mispairs to native G:C pairings are methyl-directed mismatch repair (MMR) and very short patch repair (VSPR). This work examined the possible roles that proteins in these pathways play in coordination with the canonical MTase repair of O(6)mG:T mismatches. The possibility of this repair network was analyzed by probing the efficiency of MTase repair of a single O(6)mG residue in cells deficient in individual mismatch repair proteins (Dam, MutH, MutS, MutL, or Vsr). We found that MTase repair in cells deficient in Dam or MutH showed wild-type levels of MTase repair. In contrast, cells lacking any of the VSPR proteins MutS, MutL, or Vsr showed a decrease in repair of O(6)mG by the Ada and Ogt MTases. Evidence is presented that the VSPR pathway positively influences MTase repair of O(6)mG:T mismatches, and assists the efficiency of restoring these mismatches to native G:C base pairs.  相似文献   

2.
Escherichia coli strains that are deficient in the Ada and Ogt DNA repair methyltransferases display an elevated spontaneous G:C-to-A:T transition mutation rate, and this increase has been attributed to mutagenic O(6)-alkylguanine lesions being formed via the alkylation of DNA by endogenous metabolites. Here we test the frequently cited hypothesis that S-adenosylmethionine (SAM) can act as a weak alkylating agent in vivo and that it contributes to endogenous DNA alkylation. By regulating the expression of the rat liver SAM synthetase and the bacteriophage T3 SAM hydrolase proteins in E. coli, a 100-fold range of SAM levels could be achieved. However, neither increasing nor decreasing SAM levels significantly affected spontaneous mutation rates, leading us to conclude that SAM is not a major contributor to the endogenous formation of O(6)-methylguanine lesions in E. coli.  相似文献   

3.
DNA fragments of Bacillus subtilis were inserted into a plasmid vector that can multiply in Escherichia coli cells, and foreign genes were expressed under the control of the lac promoter. By selecting hybrid plasmids that confer an increased resistance to alkylating agents on E. coli ada- mutant cells, the B. subtilis gene dat, which encodes O6-methylguanine-DNA methyltransferase, was cloned. The Dat protein, with a molecular weight of about 20,000, could transfer the methyl group from methylated DNA to its own protein molecule. Based on the nucleotide sequence of the gene, it was deduced that the protein comprises 165 amino acids and that the molecular weight is 18,779. The presumptive amino acid sequence of Dat protein is homologous to the sequences of the E. coli Ogt protein and the C-terminal half of the Ada protein, both of which carry O6-methylguanine-DNA methyltransferase activity. The pentaamino acid sequence Pro-Cys-His-Arg-Val, the cysteine residue of which is the methyl acceptor site in Ada protein, was conserved in the 3 methyltransferase proteins. The structural similarity of these methyltransferases suggests possible evolution from a single ancestral gene.  相似文献   

4.
W J Mackay  S Han    L D Samson 《Journal of bacteriology》1994,176(11):3224-3230
The Escherichia coli Ada and Ogt DNA methyltransferases (MTases) are known to transfer simple alkyl groups from O6-alkylguanine and O4-alkylthymine, directly restoring these alkylated DNA lesions to guanine and thymine. In addition to being exquisitely sensitive to the mutagenic effects of methylating agents, E. coli ada ogt null mutants display a higher spontaneous mutation rate than the wild type. Here, we determined which base substitution mutations are elevated in the MTase-deficient cells by monitoring the reversion of six mutated lacZ alleles that revert via each of the six possible base substitution mutations. During exponential growth, the spontaneous rate of G:C to A:T transitions and G:C to C:G transversions was elevated about fourfold in ada ogt double mutant versus wild-type E. coli. Furthermore, compared with the wild type, stationary populations of the MTase-deficient E. coli (under lactose selection) displayed increased G:C to A:T and A:T to G:C transitions (10- and 3-fold, respectively) and increased G:C to C:G, A:T to C:G, and A:T to T:A transversions (10-, 2.5-, and 1.7-fold, respectively). ada and ogt single mutants did not suffer elevated spontaneous mutation rates for any base substitution event, and the cloned ada and ogt genes each restored wild-type spontaneous mutation rates to the ada ogt MTase-deficient strains. We infer that both the Ada MTase and the Ogt MTase can repair the endogenously produced DNA lesions responsible for each of the five base substitution events that are elevated in MTase-deficient cells. Simple methylating and ethylating agents induced G:C to A:T and A:T to G:C transitions in these strains but did not significantly induce G:C to C:G, A:T to C:G, and A:T to T:A transversions. We deduce that S-adenosylmethionine (known to e a weak methylating agent) is not the only metabolite responsible for endogenous DNA alkylation and that at least some of the endogenous metabolites that cause O-alkyl DNA damage in E. coli are not simple methylating or ethylating agents.  相似文献   

5.
The qualitative and quantitative features of mutagenesis by two DNA adducts of carcinogenic alkylating agents, O6-methylguanine (m6G) and O4-methylthymine (m4T), were examined in vivo. The deoxyhexanucleotides 5'-GCTAGC-3' and 5'-GCTAGC-3' were synthesized, where the underlined bases are the positions of m4T or m6G, respectively. By use of recombinant DNA techniques, the respective hexanucleotides or an unmodified control were inserted into a six-base gap in the otherwise duplex genome of the Escherichia coli virus M13mp19-NheI. The duplex adducted genome was converted to single-stranded form and introduced into an E. coli strain that was phenotypically normal with regard to m6G/m4T repair, a strain deficient in repair by virtue of an insertion in the gene encoding the Ada-m6G/m4T DNA methyltransferase, or the same two cell lines after challenge with N-methyl-N'-nitro-N-nitrosoguanidine. Treatment with this alkylating agent chemically compromises alkyl-DNA repair functions. The mutation efficiency of m6G was low or undetectable (0-1.7%) in all cell systems tested, owing, we believe, to rapid repair. In striking contrast, the mutagenicity of m4T was high (12%) in cells fully competent to repair alkylation damage and was roughly doubled when those cells were pretreated with N-methyl-N'-nitro-N-nitrosoguanidine to suppress repair. Taken together, these data suggest that m4T is potentially more mutagenic than m6G and, if formed by a DNA methylating agent, may pose a significant threat to the genetic integrity of an organism.  相似文献   

6.
Escherichia coli expresses two DNA repair methyltransferases (MTases) that repair the mutagenic O6-methylguanine (O6MeG) and O4-methylthymine (O4MeT) DNA lesions; one is the product of the inducible ada gene, and here we confirm that the other is the product of the constitutive ogt gene. We have generated various ogt disruption mutants. Double mutants (ada ogt) do not express any O6MeG/O4MeT DNA MTases, indicating that Ada and Ogt are probably the only two O6MeG/O4MeT DNA MTases in E. coli. ogt mutants were more sensitive to alkylation-induced mutation, and mutants arose linearly with dose, unlike ogt+ cells, which had a threshold dose below which no mutants accumulated; this ogt(+)-dependent threshold was seen in both ada+ and ada strains. ogt mutants were also more sensitive to alkylation-induced killing (in an ada background), and overexpression of the Ogt MTase from a plasmid provided ada, but not ada+, cells with increased resistance to killing by alkylating agents. The induction of the adaptive response was normal in ogt mutants. We infer from these results that the Ogt MTase prevents mutagenesis by low levels of alkylating agents and that, in ada cells, the Ogt MTase also protects cells from killing by alkylating agents. We also found that ada ogt E. coli had a higher rate of spontaneous mutation than wild-type, ada, and ogt cells and that this increased mutation occurred in nondividing cells. We infer that there is an endogenous source of O6MeG or O4MeT DNA damage in E. coli that is prevalent in nondividing cells.  相似文献   

7.
L K Liem  A Lim    B F Li 《Nucleic acids research》1994,22(9):1613-1619
The behaviour of highly purified bacterial expressed rat O6-methylguanine-DNA methyltransferase (MGMT) towards the repair of CGCm6GAGCTCGCG and CGCe6GAGCTCGCG (km6G/ke6G = 1.45, where k is the second order repair rate constant determined, m6G and e6G are O6-methyl and O6-ethylguanine) is similar to that of E. coli 39kD Ada protein (km6G/ke6G = 1.6). However, the human MGMT is very different (km6G/ke6G = 163). The preferential repair of O6-ethylguanine lesion by the rat MGMT appears not to be related to the lack of the initiator methionine in the expressed protein since similar results were obtained from N-terminal Glutathione-S-transferase (GST) fused protein (GSTMGMT) which retains the methionine. The possible relationship between these findings and the differences observed in the primary amino acid sequence of these proteins is discussed. In addition the preferential repair of O6-ethylguanine substrate by the 39kD Ada protein as compared to the catalytic C-terminus alone (different by 134 times) suggests that the N-terminus plays a crucial role in the repair of O6-ethylguanine. This is in contrast to the minor effects of the GST domain when fused to the N-terminus of mammalian MGMT.  相似文献   

8.
Human cell-free extracts were used to detect activities specifically incising O6-methylguanine (m6G) paired with C or T in DNA. A 45-bp double-stranded DNA containing one m6G across from a T (m6G:T) was the test substrate. Extracts from glioblastoma cell lines A172 and A1235 (lacking the m6G-specific repair protein m6G-DNA methyltransferase, MGMT) and colon carcinoma cell line HT29, containing MGMT, showed incision activities specific for the T strand of m6G:T [and G:T, as reported previously by Wiebauer and Jiricny (1989)] substrates, but did not cleave m6G:C (or G:C) substrates. Competition experiments showed that the activity was similar to, if not identical with, the activity in human cells that incises G:T mismatches. The incision sites were similar to those recognized by human G:T- or G:A-specific mismatch enzymes, i.e., the phosphodiester bonds both 3' and 5' to the poorly matched T, suggesting the glycolytic removal of the poorly matched T followed by backbone incisions by class I or II AP endonucleases. Three experiments in which MGMT was inactivated showed that the m6G:T incision activity was not simply due to a two-step mechanisms in which MGMT would first mediate conversion of the m6G:T substrate to a G:T substrate which would serve as a substrate for G:T incision. Extracts from HT29 contained a DNA-binding factor, possibly DNA sequence-specific, that inhibited incision of the m6G:T (but not the G:T) substrate, that was removed by the addition of synthetic DNA to the reaction.  相似文献   

9.
A cell line with an increased resistance to alkylating agents and an extremely high level of O6-methylguanine-DNA methyltransferase activity was isolated after transfection of methyltransferase-deficient Mer- cells with a cDNA library, prepared from methyltransferase-proficient human Mer+ (Raji) cells. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis revealed that a protein, with a molecular weight of approximately 25,000, accepted 3H label from DNA that had been treated with [3H]methylnitrosourea. Since the cDNA for methyltransferase was integrated into the chromosomal DNA, it was recovered by using the polymerase chain reaction. When the cDNA placed in an expression vector p500 was introduced into Mer- cells, the cells acquired an increased resistance to alkylating agents and exhibited a high level of O6-methylguanine-DNA methyltransferase activity. From the transformants the cDNA could be recovered as a part of the autonomously replicating plasmid. The nucleotide sequence of the cDNA was determined, and an open reading frame comprising 207 amino acid residues was found. The molecular weight of methyltransferase, calculated from the predicted amino acid sequence, was 21,700. The predicted amino acid sequence of the human methyltransferase exhibits an intensive homology with those of the bacterial counterparts, Ada and Ogt proteins of Escherichia coli and Dat protein of Bacillus subtilis, especially around possible methyl acceptor sites.  相似文献   

10.
O6-Alkylguanine-DNA alkyltransferase (AGT) plays a major role in repair of the cytotoxic and mutagenic lesion O6-methylguanine (m6G) in DNA. Unlike the Escherichia coli alkyltransferase Ogt that also repairs O4-methylthymine (m4T) efficiently, the human AGT (hAGT) acts poorly on m4T. Here we made several hAGT mutants in which residues near the cysteine acceptor site were replaced by corresponding residues from Ogt to investigate the basis for the inefficiency of hAGT in repair of m4T. Construct hAGT-03 (where hAGT sequence -V149CSSGAVGN157- was replaced with the corresponding Ogt -I143GRNGTMTG151-) exhibited enhanced m4T repair activity in vitro compared with hAGT. Three AGT proteins (hAGT, hAGT-03, and Ogt) exhibited similar protection from killing by N-methyl-N′-nitro-N-nitrosoguanidine and caused a reduction in m6G-induced G:C to A:T mutations in both nucleotide excision repair (NER)-proficient and -deficient Escherichia coli strains that lack endogenous AGTs. hAGT-03 resembled Ogt in totally reducing the m4T-induced T:A to C:G mutations in NER-proficient and -deficient strains. Surprisingly, wild type hAGT expression caused a significant but incomplete decrease in NER-deficient strains but a slight increase in T:A to C:G mutation frequency in NER-proficient strains. The T:A to C:G mutations due to O4-alkylthymine formed by ethylating and propylating agents were also efficiently reduced by either hAGT-03 or Ogt, whereas hAGT had little effect irrespective of NER status. These results show that specific alterations in the hAGT active site facilitate efficient recognition and repair of O4-alkylthymines and reveal damage-dependent interactions of base and nucleotide excision repair.  相似文献   

11.
The suicidal inactivation mechanism of DNA repair methyltransferases (MTases) was exploited to measure the relative efficiencies with which the Escherichia coli, human, and Saccharomyces cerevisiae DNA MTases repair O6-methylguanine (O6MeG) and O4-methylthymine (O4MeT), two of the DNA lesions produced by mutagenic and carcinogenic alkylating agents. Using chemically synthesized double-stranded 25-base pair oligodeoxynucleotides containing a single O6MeG or a single O4MeT, the concentration of O6MeG or O4MeT substrate that produced 50% inactivation (IC50) was determined for each of four MTases. The E. coli ogt gene product had a relatively high affinity for the O6MeG substrate (IC50 8.1 nM) but had an even higher affinity for the O4MeT substrate (IC50 3 nM). By contrast, the E. coli Ada MTase displayed a striking preference for O6MeG (IC50 1.25 nM) as compared to O4MeT (IC50 27.5 nM). Both the human and the yeast DNA MTases were efficiently inactivated upon incubation with the O6MeG-containing oligomer (IC50 values of 1.5 and 1.3 nM, respectively). Surprisingly, the human and yeast MTases were also inactivated by the O4MeT-containing oligomer albeit at IC50 values of 29.5 and 44 nM, respectively. This result suggests that O4MeT lesions can be recognized in this substrate by eukaryotic DNA MTases but the exact biochemical mechanism of methyltransferase inactivation remains to be determined.  相似文献   

12.
B Demple 《Nucleic acids research》1986,14(14):5575-5589
The activated Ada protein triggers expression of DNA repair genes in Escherichia coli in response to alkylation damage. Ada also possesses two distinct suicide alkyltransferase activities, for O6-alkylguanines and for alkyl phosphotriesters in DNA. The mutant Ada3 and Ada5 transferases repair O6-methylguanine in DNA 20 and 3000 times more slowly, respectively, than the wild-type Ada protein, but both exhibit normal DNA phosphotriester repair. These same proteins also exhibit delayed and sluggish induction of the ada and alkA genes. Since the C-terminal O6-methylguanine methyltransferase domain of Ada is not implicated in the direct binding of specific DNA sequences, this part of the Ada protein is likely to play an alternative mechanistic role in gene activation, either by promoting Ada dimerization, or via direct contacts with RNA polymerase.  相似文献   

13.
R Reid  P J Greene    D V Santi 《Nucleic acids research》1999,27(15):3138-3145
The Escherichia coli fmu gene product has recently been determined to be the 16S rRNA m(5)C 967 methyltransferase. As such, Fmu represents the first protein identified as an S -adenosyl-L-methionine (AdoMet)- dependent RNA m(5)C methyltransferase whose amino acid sequence is known. Using the amino acid sequence of Fmu as an initial probe in an iterative search of completed DNA sequence databases, 27 homologous ORF products were identified as probable RNA m(5)C methyltransferases. Further analysis of sequences in undeposited genomic sequencing data and EST databases yielded more than 30 additional homologs. These putative RNA m(5)C methyltransferases are grouped into eight subfamilies, some of which are predicted to consist of direct genetic counterparts, or orthologs. The enzymes proposed to be RNA m(5)C methyltransferases have sequence motifs closely related to signature sequences found in the well-studied DNA m(5)C methyltransferases and other AdoMet-dependent methyltransferases. Structure-function correlates in the known AdoMet methyltransferases support the assignment of this family as RNA m(5)C methyltransferases.  相似文献   

14.
On the evolutionary origin of eukaryotic DNA methyltransferases and Dnmt2   总被引:1,自引:0,他引:1  
Jurkowski TP  Jeltsch A 《PloS one》2011,6(11):e28104
The Dnmt2 enzymes show strong amino acid sequence similarity with eukaryotic and prokaryotic DNA-(cytosine C5)-methyltransferases. Yet, Dnmt2 enzymes from several species were shown to methylate tRNA-Asp and had been proposed that eukaryotic DNA methyltransferases evolved from a Dnmt2-like tRNA methyltransferase ancestor [Goll et al., 2006, Science, 311, 395-8]. It was the aim of this study to investigate if this hypothesis could be supported by evidence from sequence alignments. We present phylogenetic analyses based on sequence alignments of the methyltransferase catalytic domains of more than 2300 eukaryotic and prokaryotic DNA-(cytosine C5)-methyltransferases and analyzed the distribution of DNA methyltransferases in eukaryotic species. The Dnmt2 homologues were reliably identified by an additional conserved CFT motif next to motif IX. All DNA methyltransferases and Dnmt2 enzymes were clearly separated from other RNA-(cytosine-C5)-methyltransferases. Our sequence alignments and phylogenetic analyses indicate that the last universal eukaryotic ancestor contained at least one member of the Dnmt1, Dnmt2 and Dnmt3 families of enzymes and additional RNA methyltransferases. The similarity of Dnmt2 enzymes with DNA methyltransferases and absence of similarity with RNA methyltransferases combined with their strong RNA methylation activity suggest that the ancestor of Dnmt2 was a DNA methyltransferase and an early Dnmt2 enzyme changed its substrate preference to tRNA. There is no phylogenetic evidence that Dnmt2 was the precursor of eukaryotic Dnmts. Most likely, the eukaryotic Dnmt1 and Dnmt3 families of DNA methyltransferases had an independent origin in the prokaryotic DNA methyltransferase sequence space.  相似文献   

15.
The genome of the archaeal virus phiCh1, infecting Natrialba magadii (formerly Natronobacterium magadii), is composed of 58.5 kbp linear ds DNA. Virus particles contain several RNA species in sizes of 100-800 nucleotides. A fraction of phiCh1 genomes is modified within 5'-GATC-3' and related sequences, as determined by various restriction enzyme digestion analyses. High performance liquid chromatography revealed a fifth base, in addition to the four nucleosides, which was identified as N6-methyladenosine. Genetic analyses and subsequent sequencing led to the identification of a DNA (N6-adenine) methyltransferase (mtase) gene. The protein product was designated M.phiCh1-I. By the localization of the most conserved motifs (a DPPY motif occurring before FxGxG), the enzyme was placed within the beta-subgroup of the (N6-adenine) methyltransferase class. The mtase gene of phiCh1 was classified as a 'late' gene, as determined by measuring the kinetics of mRNA and protein expression in N. magadii during the lytic cycle of phiCh1. After infection of cells, M.phiCh1-I mRNA and protein could be detected in lower amounts than in the situation of virus induction from lysogenic cells. Consequently, only about 5% of the phiCh1 progeny genomes after infection of N. magadii carry the M.phiCh1-I methylation in contrast to 50% of virus genomes generated by induction of phiCh1-lysogenic N. magadii cells. Heterologous expression of the mtase from a halophile with 3 M cytoplasmic salt concentration showed an unexpected feature: the protein was active in the low environment of Escherichia coli and was able to methylate DNA in vivo. Interestingly, it seemed to exhibit a higher sequence specificity in E. coli that resulted in adenine methylation exclusively in the sequence 5'-GATC-3'. Additionally, expression of M.phiCh1-I in dam- E. coli cells led to a complete substitution of the function of M.Dam in DNA mismatch repair.  相似文献   

16.
Guanylyltransferase and methyltransferases that modify the 5'-terminals of viral mRNA's to form the structures m7G(5')pppAm- and m7G(5')pppGm- appear to be synthesized afte- vaccinia virus infection of HeLa cells. Elevations in these enzyme activities were detected within 1 h after virus inoculation and increased 15- to 30-fold by 4 to 10 h. Increases in the guanylyl- and methyltransferase activities were prevented by cycloheximide, an inhibitor of protein synthesis, but not by cytosine arabinoside, an inhibitor of DNA synthesis. The latter results suggest that the mRNA guanylyl- and methyltransferases are "early" or prereplicative viral gene products. The guanylyltransferase and two methyltransferases, a guanine-7-methyltransferase and nucleoside-2'-methyltransferase, were isolated by column chromatography from infected cell extracts and found to have properties similar or identical to those of the corresponding enzyme previously isolated from vaccinia virus cores. In contrast, enzymes with these properties could not be isolated from uninfected cells.  相似文献   

17.
The major damage to DNA caused by alkylating agents involves the formation of O(6)-methylguanine (O(6)-meG). Almost all species possess O(6)-methylguanine-DNA-methyltransferase (Ogt) to repair such damage. Ogt repairs O(6)-meG lesions in DNA by stoichiometric transfer of the methyl group to a cysteine residue in its active site (PCHR). Thermus thermophilus HB8 has an Ogt homologue, TTHA1564, but in this case an alanine residue replaces cysteine in the putative active site. To reveal the possible function of TTHA1564 in processing O(6)-meG-containing DNA, we characterized the biochemical properties of TTHA1564. No methyltransferase activity for synthetic O(6)-meG-containing DNA could be detected, indicating TTHA1564 is an alkyltransferase-like protein. Nevertheless, gel shift assays showed that TTHA1564 can bind to DNA containing O(6)-meG with higher affinity (9-fold) than normal (unmethylated) DNA. Experiments using a fluorescent oligonucleotide suggested that TTHA1564 recognizes O(6)-meG in DNA using the same mechanism as other Ogts. We then investigated whether TTHA1564 functions as a damage sensor. Pull-down assays identified 20 proteins, including a nucleotide excision repair protein UvrA, which interacts with TTHA1564. Interaction of TTHA1564 with UvrA was confirmed using a surface plasmon resonance assay. These results suggest the possible involvement of TTHA1564 in DNA repair pathways.  相似文献   

18.
DNA methylation in higher plants: past, present and future   总被引:1,自引:0,他引:1  
  相似文献   

19.
Escherichia coli has two DNA repair methyltransferases (MTases): the 39-kilodalton (kDa) Ada protein, which can undergo proteolysis to an active 19-kDa fragment, and the 19-kDa DNA MTase II. We characterized DNA MTase II in cell extracts of an ada deletion mutant and compared it with the purified 19-kDa Ada fragment. Like Ada, DNA MTase II repaired O6-methylguanine (O6MeG) lesions via transfer of the methyl group from DNA to a cysteine residue in the MTase. Substrate competition experiments indicated that DNA MTase II repaired O4-methylthymine lesions by transfer of the methyl group to the same active site within the DNA MTase II molecule. The repair kinetics of DNA MTase II were similar to those of Ada; both repaired O6MeG in double-stranded DNA much more efficiently than O6MeG in single-stranded DNA. Chronic pretreatment of ada deletion mutants with sublethal (adapting) levels of two alkylating agents resulted in the depletion of DNA MTase II. Thus, unlike Ada, DNA MTase II did not appear to be induced in response to chronic DNA alkylation at least in this ada deletion strain. DNA MTase II was much more heat labile than Ada. Heat lability studies indicated that more than 95% of the MTase in unadapted E. coli was DNA MTase II. We discuss the possible implications of these results for the mechanism of induction of the adaptive response. A similarly active 19-kDa O6MeG-O4-methylthymine DNA MTase was identified in Salmonella typhimurium.  相似文献   

20.
We have studied the processing of O(6)-methylguanine (m6G)-containing oligonucleotides and N-methyl-N-nitrosourea (MNU)-treated DNA templates by the 3' --> 5' exonuclease of T4 DNA polymerase. In vitro biochemical analyses demonstrate that the exonuclease can remove bases opposite a defined m6G lesion. The efficiency of excision of a terminal m6G.T was similar to that of m6G.C, and both were excised as efficiently as a G.T substrate. Partitioning assays between the polymerase and exonuclease activities, performed in the presence of dNTPs, resulted in repeated incorporation and excision events opposite the m6G lesion. This idling produces dramatically less full-length product, relative to natural substrates, indicating that the 3' --> 5' exonuclease may contribute to DNA synthesis inhibition by alkylating agents. Genetic data obtained using an in vitro herpes simplex virus-thymidine kinase assay support the inefficiency of the exonuclease as a "proofreading" activity for m6G, since virtually all mutations produced by the native enzyme using MNU-treated templates were G --> A transitions. Comparison of MNU dose-response curves for exonuclease-proficient and -deficient forms of T4 polymerase reveals that the exonuclease efficiently removes 50-86% of total premutagenic alkyl mispairs. We propose that idling of exonuclease-proficient polymerases at m6G lesions during repair DNA synthesis provides the biochemical explanation for cellular cytotoxicity of methylating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号