首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nystatin is a membrane-active polyene antibiotic that is thought to kill fungal cells by forming ion-permeable channels. In this report we have investigated nystatin interaction with phosphatidylcholine liposomes of different sizes (large and small unilamellar vesicles) by time-resolved fluorescence measurements. Our data show that the fluorescence emission decay kinetics of the antibiotic interacting with gel-phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine vesicles is controlled by the mean number of membrane-bound antibiotic molecules per liposome, . The transition from a monomeric to an oligomeric state of the antibiotic, which is associated with a sharp increase in nystatin mean fluorescence lifetime from approximately 7-10 to 35 ns, begins to occur at a critical concentration of 10 nystatin molecules per lipid vesicle. To gain further information about the transverse location (degree of penetration) of the membrane-bound antibiotic molecules, the spin-labeled fatty acids (5- and 16-doxyl stearic acids) were used in depth-dependent fluorescence quenching experiments. The results obtained show that monomeric nystatin is anchored at the phospholipid/water interface and suggest that nystatin oligomerization is accompanied by its insertion into the membrane. Globally, the experimental data was quantitatively described by a cooperative partition model which assumes that monomeric nystatin molecules partition into the lipid bilayer surface and reversibly assemble into aggregates of 6 +/- 2 antibiotic molecules.  相似文献   

2.
Coat protein of bacteriophage M13 is examined in micelles and vesicles by time-resolved tryptophan fluorescence and anisotropy decay measurements and circular dichroism experiments. Circular dichroism indicates that the coat protein has alpha-helix (60%) and beta-structure (28%) in 700 mM sodium dodecyl sulfate micelles and predominantly beta-structure (94%) in mixed dimyristoylphosphatidylcholine/dimyristoylphosphatidic acid (80/20 w/w) small unilamellar vesicles. The fluorescence decay at 344 nm of the single tryptophan in the coat protein after excitation at 295 or 300 nm is a triple exponential. In the micelles the anisotropy decay is a double exponential. A short, temperature-independent correlation time of 0.5 +/- 0.2 ns reflects a rapid depolarization process within the coat protein. The overall rotation of the coat protein-detergent complex is observed in the decay as a longer correlation time of 9.8 +/- 0.5 ns (at 20 degrees C) and has a temperature dependence that satisfies the Stokes-Einstein relation. In vesicles at all lipid to protein molar ratios in the range from 20 to 410, the calculated order parameter is constant with a value of 0.7 +/- 0.1 from 10 to 40 degrees C, although the lipids undergo the gel to liquid-crystalline phase transition. The longer correlation time decreases gradually on increasing temperature. This effect probably arises from an increasing segmental mobility within the coat protein. The results are consistent with a model in which the coat protein has a beta-structure and the tryptophan indole rings do not experience the motion of the lipids in the bilayer because of protein-protein aggregation.  相似文献   

3.
The organization of lipids surrounding membrane proteins can influence their properties. We have used 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) to study phase coexistence and phase interconversion in membrane model systems. The fluorescence properties of Laurdan provide a unique possibility to study lipid domains because of the different excitation and emission spectra of this probe in the gel and in the liquid-crystalline phase. The difference in excitation spectra allows photoselection of Laurdan molecules in one of the two phases. Using the difference in emission spectra it is then possible to observe interconversion between the two phases. We have performed experiments in dipalmitoyl-phosphatidylcholine (DPPC) vesicles at different temperatures, in particular in the region of the phase transition, where phase coexistence and interconversion between phases is likely to be maximal. We have also studied vesicles of different lipids and mixtures dilauroyl-phosphatidylcholine (DLPC), DPPC, and 50% DLPC in DPPC. Both steady-state fluorescence intensity and polarization data have been collected. To quantitate phase coexistence and interconversion we have introduced the concept of "generalized polarization." We have also performed time-resolved experiments to directly prove the interconversion process. We have found that in DLPC-DPPC mixtures, at 20 degrees C, phase interconversion occurs in approximately 30-40 ns.  相似文献   

4.
Trehalose and dry dipalmitoylphosphatidylcholine revisited   总被引:4,自引:0,他引:4  
Dry mixtures of sonicated vesicles of DPPC and trehalose which contained a maximum of 0.2 mol water/mol lipid were examined by differential scanning calorimetry, Fourier transform infrared spectroscopy and freeze-fracture electron microscopy. Samples of dry DPPC and trehalose prepared from aqueous solution had a minimum Tm of 24 degrees C for the gel to liquid-crystalline transition provided that the vesicles were dried with trehalose while the lipid was in liquid-crystalline phase. This low transition is compared to a transition of 105-112 degrees C for dry pure DPPC and of 42 degrees C for hydrated pure DPPC. The present work is an extension of earlier work from this laboratory using both other lipids and other methods of preparation.  相似文献   

5.
Arrhenius plots of various enzyme and transport systems associated with the liver mitochondrial inner membranes of ground squirrels exhibit changes in slope at temperatures of 20-25 degrees C in nonhibernating but not in hibernating animals. It has been proposed that the Arrhenius breaks observed in nonhibernating animals are the result of a gel to liquid-crystalline phase transition of the mitochondrial membrane lipids, which also occurs at 20-25 degrees C, and that the absence of such breaks in hibernating animals is due to a major depression of this lipid phase transition to temperatures below 4 degrees C. In order to test this hypothesis, we have examined the thermotropic phase behavior of liver inner mitochondrial membranes from hibernating and nonhibernating Richardson's ground squirrels, Spermophilus richardsonii, by differential scanning calorimetry and by 19F nuclear magnetic resonance and fluorescence polarization spectroscopy. Each of these techniques indicates that no lipid phase transition occurs in the membranes of either hibernating or nonhibernating ground squirrels within the physiological temperature range of this animal (4-37 degrees C). Moreover, differential scanning calorimetric measurements indicate that only a small depression of the lipid gel to liquid-crystalline phase transition, which is centered at about -5 degrees C in nonhibernating animals and at about -9 degrees C in hibernators, occurs. We thus conclude that the Arrhenius plot breaks observed in some membrane-associated enzymatic and transport activities of nonhibernating animals are not the result of a lipid phase transition and that a major shift in the gel to liquid-crystalline lipid phase transition temperature is not responsible for seasonal changes in the thermal behavior of these inner mitochondrial membrane proteins.  相似文献   

6.
Nystatin interaction with liposomes mimicking fungal and mammalian membranes (ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) large unilamellar vesicles, respectively) was studied by fluorescence spectroscopy. The activity of this antibiotic was also measured using a pyranine fluorescence detected K+/H+ exchange assay. Nystatin mean fluorescence lifetime varied with the antibiotic concentration and ergosterol content (0-30 mol%) of the lipid vesicles. It sharply increased from 5 to 37 ns upon reaching 100 molecules per liposome, reporting nystatin oligomerization in the membrane. Concomitantly, spectral alterations typical of excitonic coupling were detected and there was a pronounced increase in the initial rate of pore formation by nystatin. These findings suggest that nystatin exerts its antibiotic activity via a two-stage mechanism: at low antibiotic concentrations, surface-adsorbed monomeric antibiotic molecules perturb the lipid packing, changing the permeability properties of the ergosterol-rich liposomes. Upon reaching a critical threshold, nystatin mode of action switches to the classical model of transmembrane aqueous channel formation. In the presence of cholesterol-containing POPC liposomes, neither nystatin spectroscopic properties, nor the kinetics of K+ efflux varied with the antibiotic concentration suggesting that in this case the first stage of antibiotic mode of action always prevails or the assemblies formed by nystatin and cholesterol are very loose.  相似文献   

7.
The fluorophore 4-heptadecyl-7-hydroxycoumarin was used as a probe to study the properties of phospholipid bilayers at the lipid-water interface. To this end, the steady-state fluorescence anisotropy, the differential polarized phase fluorometry, and the emission lifetime of the fluorophore were measured in isotropic viscous medium, in lipid vesicles, and in the membrane of vesicular stomatitis virus. In the isotropic medium (glycerol), the probe showed an increase in the steady-state fluorescence anisotropy with a decrease in temperature, but the emission lifetime was unaffected by the change in temperature. In glycerol, the observed and predicted values for maximum differential tangents of the probe were identical, indicating that in isotropic medium 4-heptadecyl-7-hydroxycoumarin is a free rotator. Nuclear magnetic resonance and differential scanning calorimetric studies with lipid vesicles containing 1-2 mol % of the fluorophore indicated that the packaging density of the choline head groups was affected in the presence of the probe with almost no effect on the fatty acyl chains. The fluorophore partitioned equally well in the gel and liquid-crystalline phase of the lipids in the membrane, and the phase transition of the bilayer lipids was reflected in the steady-state fluorescence anisotropy of the probe. The presence of cholesterol in the lipid vesicles had a relatively small effect on the dynamics of lipids in the liquid-crystalline state, but a significant disordering effect was noted in the gel state. One of the most favorable properties of the probe is that its emission lifetime was unaffected by the physical state of the lipids or by the temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The lipid packing of thylakoid membranes is an important factor for photosynthetic performance. However, surprisingly little is known about it and it is generally accepted that the bulk thylakoid lipids adopt the liquid-crystalline phase above -30 degrees C and that a phase transition occurs only above 45 degrees C. In order to obtain information on the nature of the lipid microenvironment and its temperature dependence, steady-state and time-resolved fluorescence measurements were performed on the fluorescence probe Merocyanine 540 (MC540) incorporated in isolated spinach thylakoids and in model lipid systems (dipalmitoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) adopting different phases. It is demonstrated that the degree and way of incorporation differs for most lipid phases--upon selective excitation at 570 nm, the amplitude of the fluorescence component that corresponds to membrane-incorporated MC540 is about 20% in gel-, 60% in rippled gel-, and 90% in liquid-crystalline and inverted hexagonal phase, respectively. For thylakoids, the data reveal hindered incorporation of MC540 (amplitude about 30% at 7 degrees C) and marked spectral heterogeneity at all temperatures. The incorporation of MC540 in thylakoids strongly depends on temperature. Remarkably, above 25 degrees C MC540 becomes almost completely extruded from the lipid environment, indicating major rearrangements in the membrane.  相似文献   

9.
Fourier transform infrared (FTIR) and time-resolved fluorescence spectroscopy have been employed to examine the structural dynamics of lipid fatty acyl chains and lipid/water interfacial region of a binary lipid mixture containing unsaturated phosphatidylethanolamine (PE) and diacylglycerol (DG). Infrared vibrational frequencies of the CH2 symmetric stretching and the C = O stretching bands of the lipids were measured at different lipid compositions and temperatures. For 0% DG, the lamellar gel to lamellar liquid crystalline (L beta-L alpha) and the L alpha to inverted hexagonal (L alpha-HII) phase transitions were observed at approximately 15 degrees and 55 degrees C, respectively. As the DG content increased gradually from 0% to 15%, the L alpha-HII phase transition temperature decreased drastically while the L beta-L alpha phase transition temperature decreased only slightly. At 10% DG, a merge of these two phase transitions was noticed at approximately 10 degrees C. For the composition study at 23 degrees C, the L alpha-HII transition occurred at approximately 6-10% DG as indicated by abrupt increases in both the CH2 and C = O stretching frequencies at those DG contents. Using time-resolved fluorescence spectroscopy, abrupt decreases in both the normalized long time residual and the initial slope of the anisotropy decay function of lipid probes, 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl]carbonyl]-3-sn-phosphatidylcholine, in these PE/DG mixtures were observed at the L alpha-HII phase transition. These changes in the anisotropy decay parameters suggested that the rotational dynamics and orientational packing of the lipids were altered at the composition-induced L alpha-HII transition, and agreed with a previous temperature-induced L alpha-HII transition study on pure unsaturated PE (Cheng (1989) Biophys. J. 55, 1025-1031). The fluorescence lifetime of water soluble probes, 8,1-anilinonapthalenes sulfonate acid, in PE/DG mixtures increased abruptly at the L alpha-HII phase transition, suggesting that the conformation and hydration of the lipid/water interfacial region also undergo significant changes at the L alpha-HII transition.  相似文献   

10.
Human erythrocyte spectrin was labelled with the probe 5, 5'-disulfato-1-(6-hexanoic acid N-hydroxysuccinimide ester)-1'-ethyl-3,3,3',3'-tetramethylindocarbocyanine (Cy3). Cy3-spectrin was bound to the outer surface of dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles and its diffusion measured by fluorescence recovery after photobleaching (FRAP). It was found that at 30 degrees C, above the lipid gel to liquid-crystalline phase transition of the lipids, Cy3-spectrin had an unexpectedly high diffusion coefficient D=(2.1+/-0.6)x10(-7)) cm2/s. At the phase transition, diffusion of Cy3-spectrin was only slightly lower; D=(1.3+/-0.3)x10(-7) cm2/s, whereas at 14 degrees C, well below the lipid phase transition, diffusion was found to be much slower with D=(3.1+/-0.12)x10(-9) cm2/s. The fast diffusion of Cy3-spectrin on the lipid surface implies that the individual bonds which bind spectrin to the lipid surface must rapidly be made and broken. In the light of these results, spectrin-lipid interactions alone appear unlikely to have any significant role in supporting the cell membrane. Probably, the interactions serve only to localise the spectrin at the inner lipid surface in order to facilitate formation of the cytoskeleton.  相似文献   

11.
J P Dufour  R Nunnally  L Buhle  T Y Tsong 《Biochemistry》1981,20(19):5576-5586
Several known forms of bilayer vesicles of dimyristoylphosphatidylcholine exhibit the gel to liquid-crystalline phase transition in the temperature range convenient for membrane enzyme reconstitution studies. This warrants a systematic investigation of their physical characteristics and their phase transition behaviors. We have employed electron microscopy, gel chromatography, 31P nuclear magnetic resonance, differential scanning microcalorimetry, and fluorescence spectroscopy to determine several physical parameters of the limiting size microvesicle (260 +/- 40 A), the larger vesicle form (900 +/- 100A) of Enoch and Strittmatter [Enoch, H. G., & Strittmatter, P. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 145], the multilamellar vesicle, and, in particular, an ATPase-trigger-fused macrovesicle (950 +/- 200 A). This latter vesicle form was produced by a spontaneous fusion of the complex of the plasma membrane ATPase of Schizosaccharomyces pombe and the lipid microvesicles at a low ratio of enzyme to vesicle concentrations, and at a low temperature (around 10 degrees C). The ATPase-trigger-fused vesicles are unilamellar and have an intact ionic permeation barrier at 30 degrees C and a gel to liquid-crystalline transition temperature at 24.4 degrees C with a transition heat of 5.64 kcal/mol. Thus, this vesicle form should be a valuable tool for studying possible proton-pumping activity of this ATPase. In contrast to data found in the literature, which show lack of the pretransition for unilamellar microvesicles, we have observed the pretransition around 15 degrees C for all the vesicle forms examined. Moreover, the transition widths of unilamellar vesicles are much broader than those of the multilamellar vesicles, suggesting that in the latter system interlayer interactions may contribute to the cooperativity of the transition.  相似文献   

12.
J R Wiener  R Pal  Y Barenholz  R R Wagner 《Biochemistry》1985,24(26):7651-7658
In order to investigate the mode of interaction of peripheral membrane proteins with the lipid bilayer, the basic (pI approximately 9.1) matrix (M) protein of vesicular stomatitis virus was reconstituted with small unilamellar vesicles (SUV) containing phospholipids with acidic head groups. The lateral organization of lipids in such reconstituted membranes was probed by fluorescent phospholipid analogues labeled with pyrene fatty acids. The excimer/monomer (E/M) fluorescence intensity ratios of the intrinsic pyrene phospholipid probes were measured at various temperatures in M protein reconstituted SUV composed of 50 mol % each of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG). The M protein showed relatively small effects on the E/M ratio either in the gel or in the liquid-crystalline phase. However, during the gel to liquid-crystalline phase transition, the M protein induced a large increase in the E/M ratio due to phase separation of lipids into a neutral DPPC-rich phase and DPPG domains presumably bound to M protein. Similar phase separation of bilayer lipids was also observed in the M protein reconstituted with mixed lipid vesicles containing one low-melting lipid component (1-palmitoyl-2-oleoylphosphatidylcholine or 1-palmitoyl-2-oleoylphosphatidylglycerol) or a low mole percent of cholesterol. The self-quenching of 4-nitro-2,1,3-benzoxadiazole (NBD) fluorescence, as a measure of lipid clustering in the bilayer, was also studied in M protein reconstituted DPPC-DPPG vesicles containing 5 mol % NBD-phosphatidylethanolamine (NBD-PE). The quenching of NBD-PE was enhanced at least 2-fold in M protein reconstituted vesicles at temperatures within or below the phase transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We report here the reversible association of a designed peptide embedded in a lipid membrane through a stimulus-sensitive trigger that changes the physical state of the bilayer matrix. A peptide designed with the classical 4-3 heptad repeat of coiled coils, equipped with leucine residues at all canonical interface positions, TH1, was rendered membrane soluble by replacement of all exterior residues with randomly selected hydrophobic amino acids. Insertion of TH1 into large unilamellar phosphatidylcholine vesicles was followed by monitoring tryptophan fluorescence. Peptide insertion was observed when the lipids were in the liquid-crystalline state [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)] but not when they were in the crystalline phase [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)]. Formation of a trimeric alpha-helical bundle in lipid bilayers was followed by fluorescence resonance energy transfer. Global fit analysis revealed a monomer--trimer equilibrium with a dissociation constant of around 10(-5) [corrected] MF(2). A lipid mixture composed of DPPC and POPC exhibiting a phase transition at 34 degrees C between a crystalline/liquid-crystalline coexistence region and a completely miscible liquid-crystalline phase was used to control the formation of the trimeric peptide bundle. TH1 is phase excluded in crystalline DPPC domains below 34 degrees C, leading to a larger number of trimers. However, when the DPPC domains are dispersed at temperatures above 34 degrees C, the number of trimers is reduced.  相似文献   

14.
Interactions of hypelcin A, an alpha-aminoisobutyric acid containing antibiotic peptide, with phosphatidylcholine vesicles were investigated to obtain information on its bioactive mechanism. The peptide induced the leakage of a fluorescent dye, calcein, entrapped in sonicated vesicles. The leakage rate depended on both the peptide and the lipid concentrations. Analysis of this dependency indicated that the leakage was due to the monomeric peptide and that the membrane-perturbing activity of the monomer was higher for solid distearoylphosphatidylcholine vesicles than for fluid egg yolk phosphatidylcholine vesicles. Hypelcin A also affected the gel to liquid-crystalline phase transition of dipalmitoylphosphatidylcholine multilamellar vesicles. The transition was broadened with a reduced transition enthalpy, suggesting the peptide strongly binds the surrounding lipids to perturb the bilayer lipid packing. A circular dichroism study revealed that the helical content of hypelcin A increases upon membrane binding. We concluded that the monomeric peptide with an increased helical content, complexed with the lipids, perturbs the lipid organization and induces the increased permeability.  相似文献   

15.
Nystatin is a polyene (tetraene) macrolide antibiotic presenting antifungal activity that acts at the cellular membrane level. In the present study, we report the interaction of this antibiotic labelled at its amine group with 7-nitrobenz-2-oxa-1,3-diazole (NBD-Nys) with sterol-free and ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) large unilamellar vesicles (LUV). The mean tetraene to NBD separating distance determined from fluorescence energy transfer measurements increased from 18 to 25.6 A upon antibiotic binding to the lipid vesicles, indicating that the monomeric labelled antibiotic adopts a more extended conformation in its lipid-bound state than in aqueous solution. The oligomeric state of membrane-bound NBD-Nys was also studied by resonance energy homotransfer between the NBD fluorophores. The decrease measured in its steady state fluorescence anisotropy upon increasing the surface concentration of the NBD-Nys is shown to be consistent with a random distribution of molecules on the surface of the liposomes. This data contradicts the sharp increase measured for nystatin mean fluorescence lifetime in the presence of 10 mol% ergosterol-containing POPC LUV within the same antibiotic concentration range and which is known to report nystatin oligomerization in the lipid vesicles. Therefore, we conclude that the amine group of nystatin is an essential requisite for the supramolecular organization/pore formation of this antibiotic.  相似文献   

16.
We studied the interaction between the 35 kDa apolipoprotein of canine pulmonary surfactant (SP 35) and five saturated phosphatidylcholines: distearoyl (DSPC), diheptadecanoyl (DHPC), dipalmitoyl (DPPC), dimyristoyl (DMPC), and dilauroyl (DLPC); and two monoenoic unsaturated phosphatidylcholines: dioleoyl (DOPC) and dielaidyl (DEPC), using temperatures at which all of the phospholipids except DOPC were in both the gel and liquid-crystalline states. The experiments were carried out in a buffer without Ca2+. The amount of apolipoprotein which was bound by both small unilamellar and multilayered vesicles of these lipids decreased as the temperature was increased. Moreover, near the temperatures of the phase transitions of all lipids except DLPC, there was an abrupt and marked reduction in binding of protein, in that over a 3-4 degree change in temperature there was an abrupt decrease in bound apolipoprotein. A similar change in binding occurred using DLPC, although the relatively large changes in bound protein occurred at about 10 and 20 degrees C, temperatures which are above the phase transition temperature of this lipid. Experiments using DOPC were limited to temperatures above the phase transition, and apolipoprotein binding was low. Experiments monitoring the intrinsic fluorescence of the protein, and the fluorescence of bis-1-anilino-8-naphthalene sulfonic acid bound to the protein, revealed a possible conformational change at about 40 degrees C. Measurement of intrinsic fluorescence provided the same result whether or not the protein was associated with lipid. DSC of the apolipoprotein indicated that this change was not associated with a measurable thermogenic process. We found that the interaction with DPPC was reversible at 42 degrees C, and we measured the thermodynamic parameters of the interaction at this temperature. These were: delta G0 = -8.0 kcal/mol apolipoprotein; delta H0 = -88 kcal/mol; delta S0 = -254 cal/Cdeg per mol. We conclude that the interaction between SP 35 and saturated phosphatidylcholines is temperature sensitive, and this probably reflects differences in the ability of gel and liquid-crystalline phospholipids to bind this protein. Both the delta H0 and delta S0 of the interaction are negative, and may reflect an immobilization of phospholipid around the apolipoprotein to form a boundary layer. This hypothesis is consistent with the findings obtained by DSC, in which the enthalpy of the phase transition of DMPC in lipid-apolipoprotein recombinants was found to be about 60% of that expected for a pure and unperturbed multilamellar dispersion.  相似文献   

17.
Differential scanning calorimetry (DSC) and electron spin resonance (ESR) measurements were made to characterize how modifications in the fatty acid composition of Escherichia coli affected the thermotropic phase transition(s) of the membrane lipd. When the fatty acid composition contained between 20 and 60% saturated fatty acids, the DSC curves for isolated phospholipids and cytoplasmic membranes showed a broad (15-25 degree C) gel to liquid-crystalline phase transition, the position of which depended on the particular fatty acid composition. Utilizing multiple lipid mutants, enrichment of the membrane phospholipids with a single long-chain cis-monoenoic fatty acid in excess of that possible in a fatty acid levels less than 20% and gradually replaced the broad peak as the cis-monoenoic fatty acid content increased. These results were obtained with phospholipids, cytoplasmic membranes, and whole cells. With these same phopholipids, plots of 2,2,6,6-tetramethylpiperidinyl-1-oxy partitioning and ESR order parameters vs. 1/T revealed discontinuities at temperatures 40-60 degrees C above the calorimetrica-ly measured gel to liquid-crystalline phase transitions. Moreover, when the membrane phospholipids were enriched with certain combinations of cis-monenoic fatty acids (e.g., cis-delta 9-16:1 plus cis-delta 11-18:1) the DSC curve showed a broad gel to liquid crystalline phase change below 0 degrees C but the ESR studies revealed no discontinuities at temperatures above those of the gel to liquid-crystalline transition. These results demonstrated that enrichment of the membrane lipids with molecules in which both fatty acyl chains are identical cis-monoenoic residues led to a distinct type of liquid-crystalline phase. Furthermore, a general conclusion from this study is that Escherichia coli normally maintains a heterogeneous mixture of lipid molecules and, by so doing, prevents strong lipid-lipid associations that lead to the formation of lipid domains in the membrane.  相似文献   

18.
J Voss  W Birmachu  D M Hussey  D D Thomas 《Biochemistry》1991,30(30):7498-7506
We have studied the effect of melittin, a basic membrane-binding peptide, on Ca-ATPase activity and on protein and lipid dynamics in skeletal sarcoplasmic reticulum (SR), using time-resolved phosphorescence and fluorescence spectroscopy. Melittin completely inhibits Ca-ATPase activity, with half-maximal inhibition at 9 +/- 1 mol of melittin bound to the membrane per mole of ATPase (0.1 mol of melittin per mole of lipid). The time-resolved phosphorescence anisotropy (TPA) decay of the Ca-ATPase labeled with erythrosin isothiocyanate (ERITC) shows that melittin restricts microsecond protein rotational motion. At 25 degrees C in the absence of melittin, the TPA is characterized by three decay components, corresponding to a rapid segmental motion (correlation time phi 1 = 2-3 microseconds), the uniaxial rotation of monomers or dimers (phi 2 = 16-22 microseconds), and the uniaxial rotation of larger oligomers (phi 3 = 90-140 microseconds). The effect of melittin is primarily to decrease the fraction of the more mobile monomer/dimer species (A2) while increasing the fractions of the larger oligomer (A3) and very large aggregates (A infinity). Time-resolved fluorescence anisotropy of the lipid-soluble probe diphenylhexatriene (DPH) shows only a slight increase in the lipid hydrocarbon chain effective order parameter, corresponding to an increase in lipid viscosity that is too small to account for the large decrease in protein mobility or inhibition of Ca-ATPase activity. Thus the inhibitory effect of melittin correlates with its capacity to aggregate the Ca-ATPase and is consistent with previously reported inhibition of this enzyme under conditions that increase protein-protein interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
C E Martin  D C Foyt 《Biochemistry》1978,17(17):3587-3591
Measurement of the time-resolved fluorescence depolarization of 1,6-diphenylhexatriene (DPH) in artificial bilayers of microsomal membrane lipids from Tetrahymena gives detailed information concerning the molecular motion of this probe and fluid properties of the membrane lipids which are obscured with steady-state methods. The rotational motion of DPH in these lipids from cells acclimated to 15 and 39.5 degrees C growth temperatures was anisotropic, which agrees with recent time-resolved studies of this probe in synthetic phospholipid systems. Evaluation of DPH polarization data obtained from these lipid fractions at their respective growth temperatures showed differences in physical properties which suggest that "viscosity", per se, of the microsomal lipids is not a strictly regulated as it is in prokaryotic systems. Rotational relaxation of DPH in 39.5 degrees C microsomal lipids measured at 15 degrees C is more complex than that of either lipid fraction measured at its actual growth temperature, suggesting that the probe has partitioned into two dissimilar environments within the bilayer. Similar effects are observed in the microsomes of 39.5 degrees C cells by freeze-fracture electron microscopy following rapid cooling to 15 degrees C. Under these conditions, two distinct regions are observed on the fracture faces, suggesting a correlation between lipid phase changes and alterations in membrane structure.  相似文献   

20.
This study establishes a new assay for measuring the transbilayer movement of dehydroergosterol (DHE) in lipid membranes. The assay is based on the rapid extraction of DHE by methyl-beta-cyclodextrin (M-CD) from liposomes. The concentration of DHE in the liposomal membrane was measured by using fluorescence resonance energy transfer (FRET) from DHE to dansyl-phosphatidylethanolamine, which is not extracted from liposomes by M-CD. The method was applied to small (SUV) and large (LUV) unilamellar vesicles of different compositions and at various temperatures. From the kinetics of FRET changes upon extraction of DHE from membranes, rates of M-CD mediated extraction and flip-flop of DHE could be deduced and were found to be dependent on the physical state of the lipid phase. For egg phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in the liquid-crystalline state, halftimes of extraction and transbilayer movement were <5 s and approximately 20-50 s, respectively, at 10 degrees C. For 1,2-dimyristoyl-sn-glycero-3-phosphocholine-SUV being in the gel state at 10 degrees C, the respective halftimes were 28 s and 5-8 min. Surprisingly, DHE could not be extracted from LUV consisting of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. This might be an indication of specific interactions between DHE molecules in membranes depending on the phospholipid composition of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号