首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four amino acids were variable between the ‘active’ indica-type and ‘inactive’ japonica-type soluble starch synthase IIa (SSIIa) of rice plants; Glu-88 and Gly-604 in SSIIa of indica-cultivars IR36 and Kasalath were replaced by Asp-88 and Ser-604, respectively, in both japonica cultivars Nipponbare and Kinmaze SSIIa, whereas Val-737 and Leu-781 in indica SSIIa were replaced by Met-737 in cv. Nipponbare and Phe-781 in cv. Kinmaze SSIIa, respectively. The SSIIa gene fragments shuffling experiments revealed that Val-737 and Leu-781 are essential not only for the optimal SSIIa activity, but also for the capacity to synthesize indica-type amylopectin. Surprisingly, however, a combination of Phe-781 and Gly-604 could restore about 44% of the SSIIa activity provided that Val-737 was conserved. The introduction of the ‘active’ indica-type SSIIa gene enabled the japonica-type cv. Kinmaze to synthesize indica-type amylopectin. The starch in the transformed japonica rice plants exhibited gelatinization-resistant properties that are characteristic of indica-rice starch. Transformed lines expressing different levels of the IR36 SSIIa protein produced a variety of starches with amylopectin chain-length distribution patterns that correlated well with their onset temperatures of gelatinization. The present study confirmed that the SSIIa activity determines the type of amylopectin structure of rice starch to be either the typical indica-type or japonica-type, by playing a specific role in the synthesis of the long B1 chains by elongating short A and B1 chains, notwithstanding the presence of functional two additional SSII genes, a single SSI gene, two SSIII genes, and two SSIV genes in rice plants.  相似文献   

2.
Stunted lemma palea 1 (slp1) is a rice mutant that displays dwarfism, shortened inflorescence lengths, severely degenerated lemmas/paleas, and sterility. The SLP1 locus was mapped between markers RM447 and D275 in the distal region of the long arm of chromosome 8, using the F2 progeny derived from the cross between the Slp1/slp1 mutant (Oryza sativa subsp. japonica) and the variety Taichung Native 1 (TN1, O. sativa subsp. indica). The SLP1 locus was further delimited to a 46.4-kb genomic region containing three putative genes: OsSPL16, OsMADS45, and OsMADS37. Comparisons of the sequence variations and expression levels of the three candidate genes between wild-type plants and homozygous slp1 mutants suggested that a missense mutation in the sixth amino acid of the OsSPL16 protein was likely responsible for the slp1 mutant phenotypes.  相似文献   

3.
Rapid and uniform seed germination under diverse environmental conditions is a desirable characteristic for most crop plants, such as rice, wheat, and maize. However, the genetic base of the variations in the rate of germination is not well understood. In this study, quantitative trait loci (QTL) for germination rate were mapped with a set of 143 chromosome segment substitution lines (CSSL) each contains a small genomic fragment from a japonica variety Nipponbare in the uniform genetic background of an indica variety Zhenshan97. Nine CSSL showed significantly lower germination rate than that in Zhenshan97. Four germination-related QTL were identified located on chromosomes 2, 5, 6 and 10, at which all japonica alleles decreased germination rate. By using the CSSL-derived F2 population, a major QTL (qGR2) on chromosome 2 was confirmed, and delimited to a 10.4 kb interval containing three putative candidate genes, of which OsMADS29 was only expressed preferentially in the seed. These results would facilitate cloning of the major gene that affects germination rate, and provide an insight into the genetic basis of germination.  相似文献   

4.
The partial pollen abortion of hybrids between the indica and japonica subspecies of Asian cultivated rice is one of the major barriers in utilizing intersubspecific heterosis in hybrid rice breeding. Although a single hybrid pollen sterility locus may have little impact on spikelet fertility, the cumulative effect of several loci usually leads to a serious decrease in spikelet fertility. Isolating of the genes conferring hybrid pollen sterility is necessary to understand this phenomenon and to overcome the resulting genetic barrier. In this study, a new locus for F1 pollen sterility, S-d, was identified on the short arm of chromosome 1 by analyzing the genetic effect of substituted segments of the near-isogenic line E11-5 derived from the japonica variety Taichung 65 (recurrent parent) and the indica variety Dee-geo-woo-gen (donor parent). The S-d locus was first mapped to a 0.8 cM interval between SSR markers PSM46 and PSM80 using a F2 population of 125 individuals. The flanking markers were then used to identify recombinants from a population of 2,160 plants derived from heterozygotes of the primary F2 population. Simultaneously, additional markers were developed from genomic sequence divergence in this region. Analysis of the recombinants in the region resulted in the successful mapping of the S-d locus to a 67-kb fragment, containing 17 predicted genes. Positional cloning of this gene will contribute to our understanding of the molecular basis for partial pollen sterility of intersubspecific F1 hybrids in rice.  相似文献   

5.
Zhao ZG  Jiang L  Zhang WW  Yu CY  Zhu SS  Xie K  Tian H  Liu LL  Ikehashi H  Wan JM 《Planta》2007,226(5):1087-1096
Partial abortion of female gametes and the resulting semi-sterility of indica × japonica inter-subspecific rice hybrids have been ascribed to an allelic interaction, which can be avoided by the use of wide compatibility varieties. To further understand the genetic mechanism of hybrid sterility, we have constructed two sets of hybrids, using as male parent either the typical japonica variety Asominori, or the wide compatibility variety 02428; and as female, a set of 66 chromosome segment substitution lines in which various chromosomal segments from the indica variety IR24 have been introduced into a common genetic background of Asominori. Spikelet semi-sterility was observed in hybrid between CSSL34 and Asominori, which is known to carry the sterility gene S31 (Zhao et al. in Euphytica 151:331–337, 2006). Cytological analysis revealed that the semi-sterility of the CSSL34 × Asominori hybrid was caused primarily by partial abortion of the embryo sac at the stage of the mitosis of the functional megaspore. A population of 1,630 progeny of the three-way cross (CSSL34 × 02428) × Asominori was developed to map S31. Based on the physical location of linked molecular markers, S31 was thereby delimited to a 54-kb region on rice chromsome 5. This fragment contains eight predicted open reading frames, four of which encode known proteins and four putative proteins. These results are relevant to the map-based cloning of S31, and the development of marker-assisted transfer of non-sterility allele inducing alleles to breeding germplasm, to allow for a more efficient exploitation of heterosis in hybrid rice.  相似文献   

6.
Polymorphism over ∼26 kb of DNA sequence spanning 22 loci and one region distributed on chromosomes 1, 2, 3 and 4 was studied in 30 accessions of cultivated rice, Oryza sativa, and its wild relatives. Phylogenetic analysis using all the DNA sequences suggested that O. sativa ssp. indica and ssp. japonica were independently domesticated from a wild species O. rufipogon. O. sativa ssp. indica contained substantial genetic diversity (π = 0.0024), whereas ssp. japonica exhibited extremely low nucleotide diversity (π = 0.0001) suggesting the origin of the latter from a small number of founders. O. sativa ssp. japonica contained a larger number of derived and fixed non-synonymous substitutions as compared to ssp. indica. Nucleotide diversity and genealogical history substantially varied across the 22 loci. A locus, RLD15 on chromosome 2, showed a distinct genealogy with ssp. japonica sequences distantly separated from those of O. rufipogon and O. sativa ssp. indica. Linkage disequilibrium (LD) was analyzed in two different regions. LD in O. rufipogon decays within 5 kb, whereas it extends to ∼50 kb in O. sativa ssp. indica. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
Spotted leaf 5 (spl5), a lesion mimic mutant, was first identified in rice (Oryza sativa L.) japonica cv. Norin8 in 1978. This mutant exhibits spontaneous disease-like lesions in the absence of any pathogens and resistance to rice blast and bacterial blight; however, the target gene has not yet been isolated. In the present study, we employed a map-based cloning strategy to finely map the spl5 gene. In an initial mapping with 100 F2 individuals (spl5/spl5) derived from a cross between the spl5 mutant and indica cv. 93-11, the spl5 gene was located in a 3.3-cM region on chromosome 7 using six simple sequence repeat (SSR) markers. In a high-resolution genetic mapping, two F2 populations with 3,149 individuals (spl5/spl5) were derived from two crosses between spl5 mutant and two indica cvs. 93-11 and Zhefu802 and six sequence-tagged site (STS) markers were newly developed. Finally, the spl5 gene was mapped to a region of 0.048 cM between two markers SSR7 and RM7121. One BAC/PAC contig map covering these markers’ loci and the spl5 gene was constructed through Pairwise BLAST analysis. Our bioinformatics analysis shows that the spl5 gene is located in the 80-kb region between two markers SSR7 and RM7121 with a high average ratio of physical to genetic distance (1.67 Mb/cM) and eighteen candidate genes. The analysis of these candidate genes indicates that the spl5 gene represents a novel class of regulators controlling cell death and resistance response in plants.  相似文献   

9.
The fragrance gene plays an important role in high-quality rice varieties and has been widely used in breeding programs. Using a random sample of 370 individuals from an F2 segregating population developed from a cross between a japonica rice variety 9407 with fragrant flavor and an indica variety IRBB60, the fgr locus was mapped on chromosome 8 between SSR markers, PSM465 and RM1109, with genetic distances of 0.3 cM and 0.1 cM to respective markers. These mapping efforts confirmed the previous mapping results. A large F3 mapping population with 7300 individuals was then developed from F2 plants, in which a small chromosomal region defined by the SSR markers, PSM465 and RM1109, was heterozygous. The analysis of recombinants in the fgr region anchored the gene locus to an interval of 28 kb flanked by the left marker NS9 and the right marker L06. Sequence analysis of this fragment predicted three open reading frames encoding putative 3-methylcrotonyl-CoA carboxylase, putative isoleucyl-tRNA synthetase, and betaine aldehyde dehydrogenase (BADH2). The latter was presumed to be the candidate gene for fragrance. This result will be very useful in molecular cloning of the fgr gene and marker-assisted transfer of the fgr gene in rice breeding programs. Published in Russian in Fiziologiya Rastenii, 2009, vol. 56, No. 4, pp. 587–595. This text was submitted by the authors in English.  相似文献   

10.
The brown planthopper (Nilaparvata lugens Stål; BPH) has become a severe constraint on rice production. Identification and pyramiding BPH-resistance genes is an economical and effective solution to increase the resistance level of rice varieties. All the BPH-resistance genes identified to date have been from indica rice or wild species. The BPH12 gene in the indica rice accession B14 is derived from the wild species Oryza latifolia. Using an F2 population from a cross between the indica cultivar 93-11 and B14, we mapped the BPH12 gene to a 1.9-cM region on chromosome 4, flanked by the markers RM16459 and RM1305. In this population, BPH12 appeared to be partially dominant and explained 73.8% of the phenotypic variance in BPH resistance. A near-isogenic line (NIL) containing the BPH12 locus in the background of the susceptible japonica variety Nipponbare was developed and crossed with a NIL carrying BPH6 to generate a pyramid line (PYL) with both genes. BPH insects showed significant differences in non-preference in comparisons between the lines harboring resistance genes (NILs and PYL) and Nipponbare. BPH growth and development were inhibited and survival rates were lower on the NIL-BPH12 and NIL-BPH6 plants compared to the recurrent parent Nipponbare. PYL-BPH6 + BPH12 exhibited 46.4, 26.8 and 72.1% reductions in population growth rates (PGR) compared to NIL-BPH12, NIL-BPH6 and Nipponbare, respectively. Furthermore, insect survival rates were the lowest on the PYL-BPH6 + BPH12 plants. These results demonstrated that pyramiding different BPH-resistance genes resulted in stronger antixenotic and antibiotic effects on the BPH insects. This gene pyramiding strategy should be of great benefit for the breeding of BPH-resistant japonica rice varieties.  相似文献   

11.
The incomplete fertility of japonica × indica rice hybrids has inhibited breeders’ access to the substantial heterotic potential of these hybrids. As hybrid sterility is caused by an allelic interaction at a small number of loci, it is possible to overcome it by simple introgression at the major sterility loci. Here we report the use of marker-assisted backcrossing to transfer into the elite japonica cv. Zhendao88 a photoperiod-sensitive male sterility gene from cv. Lunhui422S (indica) and the yellow leaf gene from line Yellow249 (indica). The microsatellite markers RM276, RM455, RM141 and RM185 were used to tag the fertility genes S5, S8, S7 and S9, respectively. Line 509S is a true-breeding photoperiod-sensitive male sterile plant, which morphologically closely resembles the japonica type. Genotypic analysis showed that the genome of line 509S comprises about 92% japonica DNA. Nevertheless, hybrids between line 509S and japonica varieties suffer from a level of hybrid sterility, although the line is highly cross-compatible with indica types, with the resulting hybrids expressing a significant degree of heterosis. Together, these results suggest that segment substitution on fertility loci based on known information and marker-assisted selection are an effective approach for utilizing the heterosis of rice inter-subspecies.  相似文献   

12.
Norin-PL8 is a cold-tolerant variety of rice (Oryza sativa L.) that was developed by introgressing chromosomal segments from a cold-tolerant tropical japonica variety, Silewah, into a template japonica variety, Hokkai241. We previously identified two closely linked quantitative trait loci, Ctb1 and Ctb2, for cold tolerance at the booting stage of Norin-PL8 in the long arm of chromosome 4. We report here the physical mapping of Ctb1 and the identification of the candidate genes. A total of 2,008 segregating individuals were screened for recombination in the Ctb1 region by a PCR-based screening, and a series of near-isogenic lines (NILs) were developed from progenies of recombinants. A comparison of the degrees of cold tolerance of the NILs indicated that Ctb1 is located in the 56-kb region covered by a bacterial artificial chromosome clone, OSJNBa0058 K23, that had been sequenced by the International Rice Genome Sequence Project. We found seven open reading frames (ORFs) in the 56-kb region. Two ORFs encoded receptor-like protein kinases that are possibly involved in signal transduction pathways. Proteins that may be associated with a ubiquitin-proteasome pathway were encoded by three ORFs, two of which encoded F-box proteins and one of which encoded a protein with a BAG domain. The other two ORFs encoded a protein with an OTU domain and an unknown protein. We were also able to show that Ctb1 is likely to be associated with anther length, which is one of major factors in cold tolerance at the booting stage.  相似文献   

13.
Rice seedlings are sensitive to low temperatures (≤15°C) and under prolonged or repeated exposure, yellowing and stunting are commonly observed. Damage to seedlings results in poor stand establishment and delayed maturation, which can cause significant reductions in yield. In general, japonica rice varieties exhibit more cold tolerance than indica varieties. Earlier genetic analysis of the California rice variety M202 revealed several quantitative trait loci (QTL) that contribute to its tolerance to low temperatures in comparison to the indica rice variety IR50. Among these QTL, qCTS4 is associated with tolerance to yellowing and stunting of rice seedlings and accounts for 40% of the phenotypic variation. Here we report on the fine mapping of qCTS4 to a 128 kb region of chromosome 4, which is highly suppressed for recombination in our mapping populations. Our results provide the necessary foundation for identifying the gene(s) underlying qCTS4 and the markers developed here may be used to introgress this region into indica varieties to improve seedling tolerance to low temperatures. The mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

14.
The detection of quantitative trait loci (QTLs) associated with UV-B resistance in rice should allow their practical application in breeding for such a complex trait, and may lead to the identification of gene characteristics and functions. Considerable variation in UV-B resistance exists within cultivated rice (Oryza sativa L.), but its detailed genetic control mechanism has not been well elucidated. We detected putative QTLs associated with the resistance to enhanced UV-B radiation in rice, using 98 BC1F5 (backcross inbred lines; BILs) derived from a cross between Nipponbare (a resistant japonica rice variety) and Kasalath (a sensitive indica rice variety). We used 245 RFLP markers to construct a framework linkage map. BILs and both parents were grown under visible light with or without supplemental UV-B radiation in a growth chamber. In order to evaluate UV-B resistance, we used the relative fresh weight of aerial parts (RFW) and the relative chlorophyll content of leaf blades (RCC). The BIL population exhibited a wide range of variation in RFW and RCC. Using composite interval mapping with a LOD threshold of 2.9, three putative QTLs associated with both RFW and RCC were detected on chromosomes 1, 3 and 10. Nipponbare alleles at the QTLs on chromosome 1 and 10 increased the RFW and RCC, while the Kasalath allele at the QTL on chromosome 3 increased both traits. Furthermore, the existence of both QTLs on chromosomes 1 and 10 for UV-B resistance was confirmed using chromosome segment substitution lines. Plants with Kasalath alleles at the QTL on chromosome 10 were more sensitive to UV-B radiation than plants with them on chromosome 1. These results also provide the information not only for the improvement of UV-B resistance in rice though marker-associated selection, but also for the identification of UV-B resistance mechanisms by using near-isogenic lines.Communicated by D.J. Mackill  相似文献   

15.
Reproductive barriers are important for the maintenance of species identity. We discovered a reproductive barrier via hybrid breakdown among the progeny of a cross between the japonica rice cultivar Koshihikari and the indica rice cultivar Habataki. Genetic analysis indicated that the hybrid breakdown is regulated by the interaction of two recessive genes: hbd2 in Habataki and hbd3 in Koshihikari. Linkage mapping showed that hbd2 is located near the 100 cM region of chromosome 2 in Habataki, whereas hbd3 is located near the 60 cM region of chromosome 11 in Koshihikari. Construction of nearly isogenic lines for hbd2 and Hbd3 (NIL-hbd2 and NIL-Hbd3), as well as a pyramiding line (NIL-hbd2 + Hbd3), confirmed that the hybrid breakdown is induced by the interaction of these two recessive genes. Our results indicate that these genes are novel for the induction of hybrid breakdown in rice.  相似文献   

16.
Genomic, proteomic, phylogenetic and evolutionary aspects of a novel gene encoding a putative chloroplast-targeted sulfate permease of prokaryotic origin in the green alga Chlamydomonas reinhardtii are described. This nuclear-encoded sulfate permease gene (SulP) contains four introns, whereas all other known chloroplast sulfate permease genes lack introns and are encoded by the chloroplast genome. The deduced amino acid sequence of the protein showed an extended N-terminus, which includes a putative chloroplast transit peptide. The mature protein contains seven transmembrane domains and two large hydrophilic loops. This novel prokaryotic-origin gene probably migrated from the chloroplast to the nuclear genome during evolution of C. reinhardtii. The SulP gene, or any of its homologues, has not been retained in vascular plants, e.g. Arabidopsis thaliana, although it is encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). A comparative structural analysis and phylogenetic origin of chloroplast sulfate permeases in a variety of species is presented.  相似文献   

17.
Target leaf spot is one of the major sorghum diseases in southern Japan and caused by a necrotrophic fungus, Bipolaris sorghicola. Sorghum resistance to target leaf spot is controlled by a single recessive gene (ds1). A high-density genetic map of the ds1 locus was constructed with simple sequence repeat markers using progeny from crosses between a sensitive variety, bmr-6, and a resistant one, SIL-05, which allowed the ds1 gene to be genetically located within a 26-kb region on the short arm of sorghum chromosome 5. The sorghum genome annotation database for BTx623, for which the whole genome sequence was recently published, indicated a candidate gene from the Leucine-Rich Repeat Receptor Kinase family in this region. The candidate protein kinase gene was expressed in susceptible plants but was not expressed or was severely reduced in resistant plants. The expression patterns of ds1 gene and the phenotype of target leaf spot resistance were clearly correlated. Genomic sequences of this region in parental varieties showed a deletion in the promoter region of SIL-05 that could cause reduction of gene expression. We also found two ds1 alleles for resistant phenotypes with a stop codon in the coding region. The results shown here strongly suggest that the loss of function or suppression of the ds1 protein kinase gene leads to resistance to target leaf spot in sorghum.  相似文献   

18.
Rice stripe disease, caused by rice stripe virus (RSV), is one of the most serious diseases in temperate rice-growing areas. In the present study, we performed quantitative trait locus (QTL) analysis for RSV resistance using 98 backcross inbred lines derived from the cross between the highly resistant variety, Kasalath, and the highly susceptible variety, Nipponbare. Under artificial inoculation in the greenhouse, two QTLs for RSV resistance, designated qSTV7 and qSTV11 KAS , were detected on chromosomes 7 and 11 respectively, whereas only one QTL was detected in the same location of chromosome 11 under natural inoculation in the field. The stability of qSTV11 KAS was validated using 39 established chromosome segment substitution lines. Fine mapping of qSTV11 KAS was carried out using 372 BC3F2:3 recombinants and 399 BC3F3:4 lines selected from 7,018 BC3F2 plants of the cross SL-234/Koshihikari. The qSTV11 KAS was localized to a 39.2 kb region containing seven annotated genes. The most likely candidate gene, LOC_Os11g30910, is predicted to encode a sulfotransferase domain-containing protein. The predicted protein encoded by the Kasalath allele differs from Nipponbare by a single amino acid substitution and the deletion of two amino acids within the sulfotransferase domain. Marker-resistance association analysis revealed that the markers L104-155 bp and R48-194 bp were highly correlated with RSV resistance in the 148 landrace varieties. These results provide a basis for the cloning of qSTV11 KAS , and the markers may be used for molecular breeding of RSV resistant rice varieties.  相似文献   

19.
We reported the isolation and identification of 10828 putative full-length cDNAs (FL-cDNA) from an indica rice cultivar, Minghui 63, with the long-term goal to isolate all full-length cDNAs from indica genome. Comparison with the databases showed that 780 of them are new rice cDNAs with no match in japonica cDNA database. Totally, 9078 of the FL-cDNAs contained predicted ORFs matching with japonica FL-cDNAs and 6543 could find homologous proteins with complete ORFs. 53% of the matched FL-cDNAs isolated in this study had longer 5′UTR than japonica FL-cDNAs. In silico mapping showed that 9776 (90.28%) of the FL-cDNAs had matched genomic sequences in the japonica genome and 10046 (92.78%) had matched genomic sequences in the indica genome. The average nucleotide sequence identity between the two subspecies is 99.2%. A majority of FL-cDNAs (90%) could be classified with GO (gene ontology) terms based on homology proteins. More than 60% of the new cDNAs isolated in this study had no homology to the known proteins. This set of FL-cDNAs should be useful for functional genomics and proteomics studies.  相似文献   

20.
A karyotypic analysis of three species of Skimmia (Rutaceae) in East Asia was performed that examined 88 individuals from 53 localities. Chromosome numbers of S. japonica, S. reevesiana and S. arisanensis were 2n=30, 31, 32 (=30+0−2B), 2n=60 and 2n=60, respectively. The chromosome number of S. arisanensis was reported for the first time. All species had a large chromosome pair or quartet (the first pair or quartet) with a median–submedian centromere in the karyotype. In S. japonica the arm ratio of this first pair was considerably variable and showed a geographical pattern. In the northern half of the distribution range, Sakhalin, Hokkaido, Honshu, Shikoku and part of Kyushu, the arm ratio was 1–1.2, while in the southern half, part of Kyushu, Ryukyu and Taiwan, the arm ratio was very variable and ranged from 1.2 to 2.4. In S. japonica the first pair was sometimes rather heteromorphic; however, the heteromorphism was not related to sex of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号