首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. coli D-glyceraldehyde-3-phosphate dehydrogenase covalently bound to Sepharose was shown to form a complex with soluble E. coli 3-phosphoglycerate kinase with a stoichiometry of 1.77 +/- 0.61 kinase molecules per tetramer of the dehydrogenase and an apparent Kd of 1.03 +/- 0.68 microM (10 mM sodium phosphate, 0.15 M NaCl). No interaction was detected between E. coli D-glyceraldehyde-3-phosphate dehydrogenase and rabbit muscle 3-phosphoglycerate kinase. The species-specificity of the bienzyme association made it possible to develop a kinetic approach to demonstrate the functionally significant interaction between E. coli D-glyceraldehyde-3-phosphate dehydrogenase and E. coli 3-phosphoglycerate kinase, which consists of an increase in steady-state rate of the coupled reaction.  相似文献   

2.
An interaction of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase labeled with FITC was studied by following the changes in fluorescence intensity of the bound dye. The association between the two enzymes was found to be a rather slow process characterized by a second order rate constant of 1.1 +/- 0.2.10(3) M-1 s-1, the KD of the complex between apoenzymes being 3.2.10(-7) M. The stability of the complex increased upon increase of temperature and ionic strength of the medium, suggesting a hydrophobic character of association. The ligands which bind at the active centers of the two enzymes (NAD+, ATP, 3-phosphoglycerate) weakened the bienzyme association. Unlabeled 3-phosphoglycerate kinase was unable to displace the FITC-labeled enzyme from the complex. Taken together, the results indicate that interaction between D-glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase labeled by FITC is assisted by the dye, which may bind at nucleotide-binding sites of GPDH. No interaction was observed between the FITC-labeled 3-phosphoglycerate kinase and lactate dehydrogenase, which suggests that protein-protein interaction at specific "recognition" sites may be a prerequisite for the complex formation.  相似文献   

3.
The possibility of a functional complex formation between glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) and 3-phosphoglycerate kinase (EC. 2.7.2.3), enzymes catalysing two consecutive reactions in glycolysis has been investigated. Kinetic analysis of the coupled enzymatic reaction did not reveal any kinetic sign of the assumed interaction up to 4 X 10(-6) M kinase and 10(-4) M dehydrogenase. Fluorescence anisotrophy of 10(-7) M or 2 X 10(-5) M glyceraldehyde-3-phosphate dehydrogenase labeled with fluorescein isothiocynate did not change in the presence of non-labeled 3-phosphoglycerate kinase (up to 4 X 10(-5) M). The frontal gel chromatographic analysis of a mixture of the two enzymes (10(-4) M dehydrogenase) could not reveal any molecular species with the kinase activity having a molecular weight higher than that of 3-phosphoglycerate kinase. Both types of physicochemical measurements were also performed in the presence of substrates of the kinase and gave the same results. The data seem to invalidate the hypothesis that there is a complex between purified pig muscle glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase.  相似文献   

4.
Pig muscle 3-phosphoglycerate kinase was complexed with 1-anilino-8-naphthalenesulfonate (ANS) in order to monitor the binding of substrates to the enzyme. The enzyme-dye interaction did not influence the enzymic activity under the experimental conditions used. By measuring the substrate-dependent change in the fluorescence emission of ANS molecules tightly bound to the enzyme (Kd less than or equal to 0.05 mM), fluorimetric titrations were carried out in 0.1 M Tris/HCl buffer pH 7.5, containing 5 mM mercaptoethanol, at 20 degrees C. The dissociation constants obtained for the separate bindings of 3-phosphoglycerate, MgATP, 1,3-bisphosphoglycerate and MgADP were 0.03 +/- 0.01 mM, 0.15 +/- 0.10 mM, 0.00005 +/- 0.00001 mM and 0.15 +/- 0.10 mM respectively. binding of 3-phosphoglycerate is weakened when MgATP is also bound to the enzyme: the dissociation constant of 3-phosphoglycerate in this ternary complex (0.25 +/- 0.08 mM) is comparable to its Km value (0.38 +/- 0.10 mM). The same weakening can be observed in the non-productive ternary complexes where MgATP is replaced by MgADP (Kd = 0.20 +/- 0.10 mM) or AMP (Kd = 0.12 +/- 0.05 mM), whereas adenosine has no such effect. This indicates the importance of the negatively charged phosphate(s) of nucleotides in influencing the binding of 3-phosphoglycerate. In contrast to 3-phosphoglycerate, the binding of the substrate analogue, glycerol 3-phosphate is practically not affected by the presence of MgATP: the dissociation constant to the free enzyme (0.40 +/- 0.10 mM) is comparable to its inhibitory constant (0.70 +/- 0.20 mM). This finding and the similarity of the dissociation constant of glycerol 3-phosphate binding (0.40 +/- 0.10 mM) and the Km value of 3-phosphoglycerate (0.38 +/- 0.10 mM) suggest that, during the enzymic reaction, binding of 3-phosphoglycerate occurs probably without involvement of the carboxyl group.  相似文献   

5.
6.
The experimental conditions favouring the association of Sepharose-bound D-glyceraldehyde-3-phosphate dehydrogenase with soluble 3-phosphoglycerate kinase were studied. Acylation of D-glyceraldehyde-3-phosphate dehydrogenase by 1.3-bisphosphoglycerate was found to be a prerequisite for the complex formation.  相似文献   

7.
Glucose requirement for postischemic recovery of perfused working heart   总被引:5,自引:0,他引:5  
The quantitative importance of glycolysis in cardiomyocyte reenergization and contractile recovery was examined in postischemic, preload-controlled, isolated working guinea pig hearts. A 25-min global but low-flow ischemia with concurrent norepinephrine infusion to exhaust cellular glycogen stores was followed by a 15-min reperfusion. With 5 mM pyruvate as sole reperfusion substrate, severe contractile failure developed despite normal sarcolemmal pyruvate transport rate and high intracellular pyruvate concentrations near 2 mM. Reperfusion dysfunction was characterized by a low cytosolic phosphorylation potential [( ATP]/[( ADP][Pi]) due to accumulations of inorganic phosphate (Pi) and lactate. In contrast, with 5 mM glucose plus pyruvate as substrates, but not with glucose as sole substrate, reperfusion phosphorylation potential and function recovered to near normal. During the critical ischemia-reperfusion transition at 30 s reperfusion the cytosolic creatine kinase appeared displaced from equilibrium, regardless of the substrate supply. When under these conditions glucose and pyruvate were coinfused, glycolytic flux was near maximum, the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction was enhanced, accumulation of Pi was attenuated, ATP content was slightly increased, and adenosine release was low. Thus, glucose prevented deterioration of the phosphorylation potential to levels incompatible with reperfusion recovery. Immediate energetic support due to maximum glycolytic ATP production and enhancement of the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction appeared to act in concert to prevent detrimental collapse of [ATP]/[( ADP][Pi]) during creatine kinase dysfunction in the ischemia-reperfusion transition. Dichloroacetate (2 mM) plus glucose stimulated glycolysis but failed fully to reenergize the reperfused heart; conversely, 10 mM 2-deoxyglucose plus pyruvate inhibited glycolysis and produced virtually instantaneous de-energization during reperfusion. The following conclusions were reached. (1) A functional glycolysis is required to prevent energetic and contractile collapse of the low-flow ischemic or reperfused heart (2). Glucose stabilization of energetics in pyruvate-perfused hearts is due in part to intensification of glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase activity. (3) 2-Deoxyglucose depletes the glyceraldehyde-3-phosphate pool and effects intracellular phosphate fixation in the form of 2-deoxyglucose 6-phosphate, but the cytosolic phosphorylation potential is not increased and reperfusion failure occurs instantly. (4) Consistent correlations exist between cytosolic ATP phosphorylation potential and reperfusion contractile function. The findings depict glycolysis as a highly adaptive emergency mechanism which can prevent deleterious myocyte deenergization during forced ischemia-reperfusion transitions in presence of excess oxidative substrate.  相似文献   

8.
alpha-Glycerophosphate dehydrogenase (EC 1.1.99.5) in mitochondria from liver of the triiodothyronine-treated rats is competitively inhibited by phosphoenolpyruvate, glyceraldehyde 3-phosphate and 3-phosphoglycerate, the apparent Ki values for phosphoenolpyruvate being 0.76 mM at pH 7.0, 1.7 mM at pH 7.4 and 3.5 mM at pH 7.7. The apparent Ki values for glyceraldehyde 3-phosphate and 3-phosphoglycerate are also pH-dependent. Other glycolytic intermediates, such as 2-phosphoglycerate, 2,3-diphosphoglycerate, pyruvate, glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-diphosphate did not alter significantly alpha-glycerophosphate dehydrogenase activity. Palmitoyl-CoA is a competitive inhibitor of this enzyme, with Ki value of about 30 micron.  相似文献   

9.
Physical interaction between rabbit muscle glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase was detected by means of matrix immobilization technique. Glyceraldehyde-3-phosphate dehydrogenase covalently bound to CNBr-activated Sepharose 4B was capable of forming a complex with soluble lactate dehydrogenase with a stoichiometry of 0.8 mole of lactate dehydrogenase per mole of glyceraldehyde-3-phosphate dehydrogenase and KD of 0.385 microM at pH 6.5. The bienzyme association weakened when pH changed to 7.0 (the KD increased to 1.25 microM).  相似文献   

10.
1. Co2+ is not a cofactor for 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase(phe). 2. The following analogues of phosphoenolpyruvate were tested as inhibitors of 3-deoxy-D-arabinoheptolosonate-7-phosphate synthetase(phe): pyruvate, lactate, glycerate, 2-phosphoglycerate, 2,3-bisphosphoglycerate, 3-methylphosphoenolpyruvate, 3-ethylphosphoenolpyruvate and 3,3-demethylphosphoenolpyruvate. The rusults obtained indicate that the binding of phosphoenolpyruvate to the enzyme requires a phosphoryl group on the C-2 position of the substrate and one free hydrogen atom at the C-3 position. 3. The dead-end inhibition pattern observed with the substrate analogue 2-phosphoglycerate when either phosphoenolpyruvate or erythrose 4-phosphate was the variable substrate is inconsistent with a ping-pong mechanism and indicates that the reaction mechanism for this enzyme must be sequential. The following kinetic constants were determined:Km for phosphoenolpyruvate, 0.08 +/- 0.04 mM; Km for erythrose 4-phosphate, 0.9 +/- 0.3 mM; K is for competitive inhibition by 2-phosphoglycerate with respect to phosphoenolpyruvate, 1.0 +/- 0.1 mM. 4. The enzyme was observed to have a bell-shaped pH PROFILE WITH A PH OPTIMUM OF 7.0. The effects of pH ON V and V/(Km for phosphoenolpyruvate) indicated that an ionizing group of pKa 8.0-8.1 is involved in the catalytic activity of the enzyme. The pKa of this group is unaffected by the binding of phosphoenolpyruvate.  相似文献   

11.
L D Byers  H S She  A Alayoff 《Biochemistry》1979,18(12):2471-2480
The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase catalyzes the oxidative phosphorylation of D-glyceraldehyde 3-phosphate. A variety of phosphonates have been shown to substitute for phosphate in this reaction [Gardner, J. H., & Byers, L. D., (1977) J. Biol. Chem. 252, 5925--5927]. The dependence of the logarithm of the equilibrium constant for the reaction on the pKa2 value of the phosphonate is characterized by a Br?nsted coefficient, betaeq, of approximately 1. This represents the sensitivity of the transfer of the phosphoglyceroyl group between the active-site sulfhydryl residue (in the acyl-enzyme intermediate) and the acyl acceptor on the basicity of the acyl acceptor. Molybdate (MoO42-) can also serve as an acyl acceptor in the glyceraldehyde-3-phosphate dehydrogenase catalyzed reaction. The second-order rate constant for the reaction with molybdate is only approximately 12 times lower than the reaction with phosphate even though the pKa2 of molybdate is 3.1 units lower than the pKa2 of phosphate. The immediate product of the molybdate reaction is the acyl molybdate, 1-molybdo-3-phosphoglycerate. The acyl molybdate, like the acyl arsenate (the immediate product of the reaction when arsenate is the acyl acceptor), is kinetically unstable. At pH 7.3 (25 degrees C), the half-life for hydrolysis of the acyl molybdate, or the acyl arsenate, is less than 2.5 s. Thus, hydrolysis of 1-molybdo- and 1-arseno-3-phosphoglycerate is at least 2000 times faster than hydrolysis of 1,3-diphosphoglycerate under the same conditions. Glyceraldehyde-3-phosphate dehydrogenase has a fairly broad specificity for acyl acceptors. Most tetrahedral oxy anions tested are substrates for the enzyme (except SO4(2-) and SeO4(2-)). Tetrahedral monoanions such as ReO4- and GeO(OH)3- are not substrates but do bind to the enzyme. These results suggest the requirement of at least one anionic site on the acyl acceptor required for binding and another anionic group on the acyl receptor required for nucleophilic attack on the acyl enzyme.  相似文献   

12.
The time course of the conversion of 3-phospho-D-glycerate (GriP) to glyceraldehyde-3-phosphate (GraP) catalyzed by 3-phospho-D-glycerate kinase (GriP kinase) and glyceraldehyde-3-phosphate dehydrogenase (GraPDH) couple has been reinvestigated. The dependence of the steady-state rate on the dehydrogenase concentration is fully compatible with the consecutive nature of the reaction and therefore is not necessarily related to a complex formation of the two enzymes. To derive a Kd value of a bienzyme complex, as was done by Sukhodolets et al. [Sukhodolets, M. V., Muronetz, V. I. & Nagradova, N. K. (1987) Biochem. Int. 15, 373-379], is basically erroneous. In contrast with some previous reports, the maximal activity of GriP kinase is not influenced by the auxiliary enzyme present in the coupled assay system. Thus, no special accelerating effect can be attributed to GraPDH. 1,3-Bisphospho-D-glycerate (GriP2) bound to GriP kinase does not seem to be a substrate for GraPDH, providing evidence against channelling of GriP2 between the two enzymes.  相似文献   

13.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

14.
Cytoplasmic alpha-glycerol-3-phosphate dehydrogenase from fruit-bat-breast muscle was purified by ion-exchange and affinity chromatography. The specific activity of the purified enzyme was approximately 120 units/mg of protein. The apparent molecular weight of the native enzyme, as determined by gel filtration on Sephadex G-100 was 59,500 +/- 650 daltons; its subunit size was estimated to be 35,700 +/- 140 by SDS-polyacrylamide gel electrophoresis. The true Michaelis-Menten constants for all substrates at pH 7.5 were 3.9 +/- 0.7 mM, 0.65 +/- 0.05 mM, 0.26 +/- 0.06 mM, and 0.005 +/- 0.0004 mM for L-glycerol-3-phosphate, NAD(+), DHAP, and NADH, respectively. The true Michaelis-Menten constants at pH 10.0 were 2.30 +/- 0.21 mM and 0.20 +/- 0.01 mM for L-glycerol-3-phosphate and NAD(+), respectively. The turnover number, k(cat), of the forward reaction was 1.9 +/- 0.2 x 10(4)s(-1). The treatment of the enzyme with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) under denaturing conditions indicated that there were a total of eight cysteine residues, while only two of these residues were reactive towards DTNB in the native enzyme. The overall results of the in vitro experiments suggest that alpha-glycerol-3-phosphate dehydrogenase of the fruit bat preferentially catalyses the reduction of dihydroxyacetone phosphate to glycerol-3-phosphate.  相似文献   

15.
Yeast glyceraldehyde-3-phosphate dehydrogenase (GPDH) covalently attached to CNBr-activated Sepharose 4B was shown to be capable of binding soluble yeast phosphoglycerate kinase (PGK) in the course of incubation in the presence of an excess of 1,3-diphosphoglycerate. The association of the matrix-bound and soluble enzymes also occurred if the kinase was added to a reaction mixture in which the immobilized glyceraldehyde-3-phosphate dehydrogenase, NAD, glyceraldehyde-3-phosphate and Pi had been preincubated. Three kinase molecules were bound per a tetramer of the immobilized dehydrogenase and one molecule per a dimer. An immobilized monomer of glyceraldehyde-3-phosphate dehydrogenase was incapable of binding phosphoglycerate kinase. The matrix-bound bienzyme complexes were stable enough to survive extensive washings with a buffer and could be used repeatedly for activity determinations. Experimental evidence is presented to support the conclusion that 1,3-diphosphoglycerate produced by the kinase bound in a complex can dissociate into solution and be utilized by the dehydrogenase free of phosphoglycerate kinase.  相似文献   

16.
3-Phosphoglycerate kinase (3-PGK) has been purified to apparent homogeneity from Ehrlich ascites carcinoma (EAC) cells by (NH4)2SO4 precipitation, gel filtration and ion-exchange chromatography. The enzyme has been partially characterized and compared with the characteristics of this enzyme of other normal and malignant cells. The EAC cell 3-PGK is composed of a single subunit of 47 kDa. It has a broad pH optimum (pH 6.0-7.5) for its enzymatic activity. The apparent Km values of 3-phosphoglycerate (3-PGA) and ATP for 3-PGK have been found out to be 0.25 mM and 0.1 mM respectively. Similar to 3-PGK of other cells, the EAC enzyme requires either Mg2+ or Mn2+ for full activity; the optimum concentrations of Mg2+ and Mn2+ are 0.8 mM and 0.5 mM respectively. When ATP and 3-PGA act as substrates, ADP, the reaction product of 3-PGK-catalyzed reaction has been found to inhibit this enzyme. Kinetic studies were made on the inhibition of ADP in presence of the substrates ATP and 3-PGA. Attempts to hybridize 3-PGK and glyceraldehyde-3-phosphate dehydrogenase of EAC cells by NAD or glutaraldehyde were unsuccessful.  相似文献   

17.
Fructose-1,6-bisphosphate and triosephosphates have been separated by high performance liquid chromatography utilizing a SynChropack AX anion exchange column with 50-200 mM KH2PO4, pH 2.5-4.6 as mobile phase. The best resolution for each compound was reached in a system of 150 mM KH2PO4, pH 2.5. If radioactive fructose-1,6-bisphosphate as initial substrate was enzymatically converted in triosephosphates, the recoveries of metabolites after the precipitation and chromatographic procedures were higher than 95%. The concentration of radioactive 3-phosphoglycerate measured by liquid scintillation shows a good correlation (correlation coefficient: 0.997) with the spectrophotometrically determined concentration of NADH, which is formed from [U-14C]fructose-1,6-bisphosphate in equimolar concentration with 3-phosphoglycerate in aldolase and glyceraldehyde-3-phosphate dehydrogenase system. The method developed was applied to detect the inhibitory effect of triosephosphate isomerase on aldolase activity which takes place due to the heterologous complex formation.  相似文献   

18.
Lactate dehydrogenase and NANA-lyase were immobilized in an artificial gelantine membrane. This bienzyme system was used for continuous assay of neuraminidase activity. The K'(m) of the active membrane for lactate dehydrogenase and NANA-lyase using NADH, pyruvic acid, and N-acetylneuraminic acid as substrates were found to be 0.25mM, 0.75mM, and 2.1mM, respectively. The K(m) of soluble neuraminidase using sialyllactose as substrate was found to be 0.13 mM. The pH optimum for neuraminidase activity was 6.0. At 45 degrees C the reaction rate was higher, and no denaturation phenomena of the immobolized enzymes have been observed. This bienzyme membrane was stable for several weeks stored in the reaction buffer at 4 degrees C.  相似文献   

19.
A radiometric method has been devised for the determination of small quantities of NADH formed in preceding dehydrogenase reactions. In a coupled enzymatic reaction, phosphoglycerate kinase (PGK) catalyzes the transfer of [32P]orthophosphate from [gamma-32P]ATP to 3-phosphoglycerate; the intermediate, 1,3-[1-32P]diphosphoglycerate, is dephosphorylated by glyceraldehyde-3-phosphate dehydrogenase (GAP-DH). [32P]Orthophosphate is released proportionally to NADH and can be measured after adsorption of [gamma-32P]ATP to activated charcoal. With this method, 0.2 pmol of NADH are detectable in the presence of a 10(4)-fold excess of NAD over NADH.  相似文献   

20.
Kelly GJ  Gibbs M 《Plant physiology》1973,52(6):674-676
A triose phosphate/3-phosphoglycerate shuttle for the indirect transfer of photosynthetically reduced NADP from chloroplasts to the cytoplasm has been demonstrated in vitro. Triose phosphate, formed from 3-phosphoglycerate in the chloroplast, was oxidized back to 3-phosphoglycerate outside the chloroplast by the nonreversible d-glyceraldehyde 3-phosphate dehydrogenase reaction which is specific for NADP. The 3-phosphoglycerate could presumably return to the chloroplast to complete the shuttle. The properties of nonreversible d-glyceraldehyde 3-phosphate dehydrogenase are considered particularly suitable for effective operation of this shuttle system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号