首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Competitive interactions between organisms from distantly related phylogenetical branches have been suggested as being one of the most pervasive forms of interspecific competition. However, so-called inter-kingdom competition has rarely been the focus of ecological and evolutionary studies. Thus, a relatively novel hypothesis has been proposed on the basis that saprophagous insects might intensively compete with filamentous fungi for ephemeral resources (e.g. decaying plant tissue). Consideration that life history traits (e.g. developmental time) are adaptive in determining developmental success in the presence of con- or hetero-specifics competitors implies that these traits have been progressively established by natural selection. Because a similar scenario may apply to antagonistic interactions between saprophagous insects and filamentous fungi, one can expect the existence of heritable variation in developmental success when insect larvae are forced to grow in the presence of noxious mould. Therefore, this study aimed at discovering whether a local population of Drosophila melanogaster indeed harbours genetic variation in developmental success in the presence of the mould Aspergillus niger. By using the isofemale line technique, single larvae forced to feed on fungal infected or uninfected substrate were analysed for variation in survival probability to the adult stage, developmental time and body size of emerged adults. I found genetic variation in survival probability in fungal infected substrates but not in uninfected larval food sources. Mean developmental time and body size varied significantly among isofemale lines in both types of larval environment. Survival was negatively correlated with developmental time on fungal infected substrate, but variation in developmental time on fungal-free substrates was not correlated with survival on fungal infected food patches. Within-trait correlation between fungal infected and uninfected substrates was surprisingly weak, and developmental time was not correlated with body size. The results of this study demonstrate (a) the existence of genetic variation for larval developmental success in the presence of A. niger in a Drosophila population, and (b) heritability of important insect life history traits differed as a function of the larval environment (fungal infected or uninfected feeding substrate). I discuss models that might explain heritability differences and the evolutionary consequences of these results.  相似文献   

2.
Abstract. 1. Recent studies have demonstrated the existence of positive density dependence in the survival and development of Drosophila (the so‐called Allee effect); however the underlying mechanisms of such Allee effects have remained elusive. Competition with filamentous fungi have often been suggested to be involved in causing high mortality at low larval density, but it has not yet been explicitly tested if the well known spatial aggregation of insect eggs yields a fitness benefit for the developing larvae in the presence of noxious moulds. 2. Using Drosophila melanogaster, the present study tested whether larval survival is greater in aggregations when confronted with various combinations of three representative mould species (Aspergillus, Alternaria, and Penicillium) and a head start for fungal development. 3. High rates of fungal‐dependent mortality and significant positive density‐dependent larval survival (i.e. Allee effects) were observed when larvae were confronted with food resources containing established colonies of Aspergillus or Alternaria. Neither the simultaneous transfer of Aspergillus or Alternaria spores with larvae to food patches nor food infections with Penicillium affected insect larval development. 4. Significant correlations between mould growth and larval survival could be identified, although the patterns that emerged were shown to be inconsistent when the effects were compared between fungal species and fungal priority. Because mould growth only partly explained larval survival, the influence of other fungal‐borne factors, e.g. mycotoxins, needs to be elucidated in order to understand the mechanistic basis of insect–mould interactions. 5. These results are the first to argue convincingly for moulds being involved in mediating Allee effects for insects on ephemeral resources; however they also demonstrate an unexpected diversity in insect–mould interactions. Considering this diversity may be important in understanding insect spatial ecology.  相似文献   

3.
Rohlfs M 《Mycologia》2005,97(5):996-1001
Larvae of saprophagous insects often have been suspected of being competitors of filamentous fungi on decaying organic matter, which negatively influence mold development. Of interest, the role of insects in determining fungal growth and the onset of sporulation largely has been ignored. I used Aspergillus niger and the vinegar fly Drosophila melanogaster as an ecological model system to analyze the influence of insect larvae on daily fungal growth and the start of conidiospore production. I used an artificial substrate to test whether the effect of larval density (one, five and 10 larvae) and inoculation date of the mold (2 and 3 d ahead of the addition of larvae) significantly altered fungal growth. Fungal growth (area covered by hyphal tissue of the artificial patch) was affected negatively by the number of larvae and by the time that elapsed between inoculation with fungal spores and transfer of larvae to the patches. Whereas one larva had only a minor effect on fungal growth, five or 10 larvae strongly hampered mold development. As time between inoculation with spores and introduction of fly larvae increased, mold increased, indicating a priority effect for the fungus. When 10 larvae were transferred at the same time as the patches were inoculated with spores, almost no mold was visible within the period of observation (after 12 d). In comparison with control treatment (no insect larvae), an increase in larval density caused an increasing delay of several days in the start of spore production. Thus only minor changes in the density of insect larvae and the time that larvae entered the patches after inoculation with spores had an enormous effect on fungal growth and spore production. Therefore insects co-occurring with mold on ephemeral resources might constitute an important biotic factor driving local fungal population dynamics. The mechanisms leading to the suppression of fungal growth and the evolutionary implications of insect-mold interactions are discussed.  相似文献   

4.
Drosophilid flies breeding on ephemeral resource patches (e.g., decaying fruits) are assumed to transfer yeasts to their oviposition sites, presumably in order to positively affect offspring development. We tested this hypothesis with Drosophila subobscura Collin (Diptera: Drosophilidae) by manipulating their nutritional (yeast‐fed vs. non‐yeast‐fed) and reproductive status (mated vs. non‐mated). Flies were then released into vials containing decaying fruits (either sloes, crab apples, or Syrian plums). After a constant residence time in the vials, the flies were removed, 16 first‐instar larvae were transferred to the fruits and their survival probability to the adult stage was recorded. Whereas previous exposure of the larval substrate to yeast‐fed males and virgin females (yeast‐fed and non‐yeast‐fed) had no effect on survivorship, exposure to yeast‐fed and mated females that deposited eggs on the fruits (subsequently removed) led to a significant increase in the survival probability of the transferred larvae to the adult stage. Although the exact mechanism of yeast transmission remains to be determined, we suggest an active inoculation of the breeding substrates with yeast by ovipositing females. In agreement with previous studies, we found a negative effect of mould growth on larval survival, which, however, depended on the fruit type. We discuss various scenarios of yeast involvement in benefits to the insect larvae and suggest that insect–mould interactions should be examined in detail in order to better understand the behavioural and life‐history traits of insects that depend on ephemeral resources.  相似文献   

5.
In addition to their fundamental role in nutrient recycling, saprobiotic microorganisms may be considered as typical consumers of food‐limited ephemeral resource patches. As such, they may be engaged in inter‐specific competition with saprophagous animals feeding from the same resource. Bacteria and filamentous fungi are known to synthesise secondary metabolites, some of which are toxic and have been proposed to deter or harm animals. The microorganisms may, however, also be negatively affected if saprophagous animals do not avoid microbe‐laden resources but feed in the presence of microbial competitors. We hypothesised that filamentous fungi compete with saprophagous insects, whereby secondary metabolites provide a chemical shield against the insect competitors. For testing this, we developed a new ecological model system representing a case of animal–microbe competition between saprobiotic organisms, comprising Drosophila melanogaster and species of the fungus Aspergillus (A. nidulans, A. fumigatus, A. flavus). Infestation of Drosophila breeding substrate with proliferating fungal colonies caused graduated larval mortality that strongly depended on mould species and colony age. Confrontation with conidiospores only, did not result in significant changes in larval survival, suggesting that insect death may not be ascribed to pathogenic effects. When confronted with colonies of transgenic fungi that lack the ability to express the global secondary metabolite regulator LaeA (ΔlaeA), larval mortality was significantly reduced compared to the impact of the wild type strains. Yet, also in the ΔlaeA strains, inter‐specific variation in the influence on insect growth occurred. Competition with Drosophila larvae impaired fungal growth, however, wild type colonies of A. nidulans and A. flavus recovered more rapidly from insect competition than the corresponding ΔlaeA mutants (not in A. fumigatus). Our findings provide genetic evidence that toxic secondary metabolites synthesised by saprotrophic fungi may serve as a means to combat insect competitors. Variation in the ability of LaeA to control expression of various secondary metabolite gene clusters might explain the observed species‐specific variation in DrosophilaAspergillus competition.  相似文献   

6.
Rohlfs M 《Oecologia》2008,155(1):161-168
Although still underrepresented in ecological research, competitive interactions between distantly related organisms (so-called “interkingdom competition”) are expected to be widespread in various ecosystems, with yet unknown consequences for, e.g. trophic interactions. In the model host–parasitoid system Drosophila melanogaster–Asobara tabida, toxic filamentous fungi have been shown to be serious competitors that critically affect the density-dependent survival of host Drosophila larvae. This study investigates the extent to which the competing mould Aspergillus niger affects key properties of the well-studied Drosophila–parasitoid system and how the host–parasitoid interaction influences the microbial competitor. In contrast to slightly positive density-dependent host mortality under mould-free conditions, competing A. niger mediated a strong Allee effect for parasitised larvae, i.e. mortality decreased with increasing larval density. It was found that the common toxic fungal metabolite kojic acid is not responsible for higher death rates in parasitised larvae. Single parasitised Drosophila larvae were less harmful to fungal reproduction than unparasitised larvae, but this effect vanished with an increase in larval density. As predicted from the negative effect of fungi on host survival and thus on parasitoid fitness at low larval densities, A. tabida females spent less time foraging in fungus-infested patches. Interestingly, even though high host larval densities increased host survival, parasitoids still reduced their search efforts in fungus-infested patches, indicating a benefit for host larvae from feeding in the presence of noxious mould. Thus, this experimental study provides evidence of the potentially important role of interkingdom competition in determining trophic interactions in saprophagous animal communities and the dynamics of both host–parasitoid and microbial populations.  相似文献   

7.
Anna-Liisa Laine 《Oikos》2004,107(2):329-337
While biotrophic fungal pathogens have generally been considered to have negative effects on phytophagous insects sharing the same host plant, very little is known about whether fungal infection may affect the dynamics of natural insect populations. This study was designed to determine the effects of fungal infection by Podosphaera plantaginis , a powdery mildew, of a shared host plant, Plantago lanceolata , on the larvae of the butterfly Melitaea cinxia . Larval responses were assessed in a no-choice feeding assay involving infected and healthy leaves, as well as in a behavioural experiment in which larvae had an opportunity to move among infected and uninfected plants. In the no-choice feeding assay larvae developed more slowly and weighed less at diapause when feeding on fungal-infected than on healthy leaves. In the behavioural experiment larval groups tended to leave the original host plant when it was infected by P. plantaginis . This tendency was associated with splitting of larval groups into smaller subgroups. These effects observed in an experimental setting were also confirmed to act under natural conditions. An analysis of 167 M. cinxia populations showed that over-winter survival of larval groups was 26% lower in host populations infected by the mildew than in non-infected host populations. Smaller, more slowly developing larvae may not be ready to enter diapause at the onset of fall, causing the observed increase in mortality. This is the first study to demonstrate that the negative effects of a biotrophic fungal infection may extend to the dynamics of entire insect populations.  相似文献   

8.
Female fruit flies, Drosophila melanogaster, lay their eggs on decaying plant material. Foraging fly larvae strongly depend on the availability of dietary microbes, such as yeasts, to reach the adult stage. In contrast, strong interference competition with filamentous fungi can cause high mortality among Drosophila larvae. Given that many insects are known for employing beneficial microbes to combat antagonistic ones, we hypothesized that fly larvae engaged in competition with the noxious mould Aspergillus nidulans benefit from the presence of dietary yeast species, especially when they are associated with increasingly species rich yeast communities (ranging from one to six yeast species per community). On a nutrient‐limited fruit substrate infested with A. nidulans, both larval survival and development time were positively affected by more diverse yeast communities. On a mould‐free fruit substrate, merely larval development but not survival was found to be affected by increasing species richness of dietary yeasts. Not only yeast diversity had an effect on D. melanogaster life‐history traits, but also the identity of the yeast combinations. These findings demonstrate the importance of the structure and diversity of microbial communities in mutualistic animal–microbe interactions.  相似文献   

9.
Abstract   The larval stages of saprophagous insects and filamentous fungi have been demonstrated to be serious competitors on decaying organic matter. When filamentous fungi appear to be competitively superior, fungal mycotoxins have frequently been suggested to constitute chemical weapons, causing high mortality among insect larvae. In this study, we tested whether typical fungal secondary compounds can indeed be considered as the underlying mechanism of interference competition between filamentous fungi and various saprophagous Drosophila species. In contrast to our expectation, we found no grand mycotoxin-specific effects, but insect survival appeared to be generally determined by complex interaction between toxin identity, toxin concentration and insect species. Three out of five drosophilids seemed to be equally affected by the mycotoxins used in this study, whereas two species showed toxin-specific changes in survival. Only two (Kojic acid and Ochratoxin A) out of seven mycotoxins caused insect-specific responses. Moreover, we discovered correlations between survival in toxin-free and spoiled substrates, which may indicate an interrelationship between intra-specific competitive ability and resistance to mycotoxins. We discuss the significance of mycotoxins as underlying mechanisms driving competitive insect–fungus interactions.  相似文献   

10.
Competition between microorganisms and arthropods has been shown to be an important ecological interaction determining animal development and spatial distribution patterns in saprophagous communities. In fruit-inhabiting Drosophila, variation in insect developmental success is not only determined by species-specific effects of various noxious filamentous fungi but, as suggested by an earlier study, also by additive genetic variation in the ability to successfully withstand the negative impact of the fungi. If this variation represents a direct adaptive response to the degree to which insect breeding substrates are infested with harmful fungi, genetic variation for successful development in the presence of fungi could be maintained by variation in infestation of resource patches with fungi. We selected for the ability to resist the negative influence of mould by maintaining replicated Drosophila melanogaster populations on substrates infested with Aspergillus nidulans. After five cycles of exposure to the fungus during the larval stage, the selected populations were compared with unselected control populations regarding adult survival and reproduction to reveal an evolved resistance against the fungal competitor. On fungus-infested larval feeding substrates, emerged adults from mould-selected populations had higher survival rates and higher early fecundity than the control populations. In the unselected populations, females had higher mortality rates than males, and a high proportion of both females and males appeared to be unable to lay eggs or fertilise eggs, respectively. When larvae developed on non-infested food we found indications of a loss of resistance to abiotic and starvation stress in the adult stage in flies from the selected populations. This suggests that there are costs associated with an increase in resistance against the microbial competitor. We discuss the underlying mechanisms that might have selected for increased resistance against harmful fungi.  相似文献   

11.

Background

Fungi are key dietary resources for many animals. Fungi, in consequence, have evolved sophisticated physical and chemical defences for repelling and impairing fungivores. Expression of such defences may entail costs, requiring diversion of energy and nutrients away from fungal growth and reproduction. Inducible resistance that is mounted after attack by fungivores may allow fungi to circumvent the potential costs of defence when not needed. However, no information exists on whether fungi display inducible resistance. We combined organism and fungal gene expression approaches to investigate whether fungivory induces resistance in fungi.

Methodology/Principal Findings

Here we show that grazing by larval fruit flies, Drosophila melanogaster, induces resistance in the filamentous mould, Aspergillus nidulans, to subsequent feeding by larvae of the same insect. Larval grazing triggered the expression of various putative fungal resistance genes, including the secondary metabolite master regulator gene laeA. Compared to the severe pathological effects of wild type A. nidulans, which led to 100% insect mortality, larval feeding on a laeA loss-of-function mutant resulted in normal insect development. Whereas the wild type fungus recovered from larval grazing, larvae eradicated the chemically deficient mutant. In contrast, mutualistic dietary yeast, Saccharomyces cerevisiae, reached higher population densities when exposed to Drosophila larval feeding.

Conclusions/Significance

Our study presents novel evidence that insect grazing is capable of inducing resistance to further grazing in a filamentous fungus. This phenotypic shift in resistance to fungivory is accompanied by changes in the expression of genes involved in signal transduction, epigenetic regulation and secondary metabolite biosynthesis pathways. Depending on reciprocal insect-fungus fitness consequences, fungi may be selected for inducible resistance to maintain high fitness in fungivore-rich habitats. Induced fungal defence responses thus need to be included if we wish to have a complete conception of animal-fungus co-evolution, fungal gene regulation, and multitrophic interactions.  相似文献   

12.
To discover the relationship between a leaf-rolling moth and the fungi densely covering its cocoons, the rolled nest leaves were collected in two districts in Japan and antibacterial properties of the fungi were examined. Cocoons and fungi isolated from the nest were classified into 5 categories by the growth stages of the insects, and 7 categories based on taxonomic properties and pigment productivity, respectively. The dominant genus was Penicillium in each location. However, the composition of the fungal categories was different and seemed to depend on their circumstances. From all cocoons with larvae, the strains that belonged to the same fungal category and produced the same antibiotic (deoxyherqueinone) were isolated. From these results, the species-specific relationship between the insect and fungi or fungal products was considered to be not extremely tight, and it was suggested the period of the larval spinning of the cocoon is a key stage of this unique relationship.  相似文献   

13.
Rohlfs M  Hoffmeister TS 《Oecologia》2004,140(4):654-661
Although an increase in competition is a common cost associated with intraspecific crowding, spatial aggregation across food-limited resource patches is a widespread phenomenon in many insect communities. Because intraspecific aggregation of competing insect larvae across, e.g. fruits, dung, mushrooms etc., is an important means by which many species can coexist (aggregation model of species coexistence), there is a strong need to explore the mechanisms that contribute to the maintenance of this kind of spatial resource exploitation. In the present study, by using Drosophila-parasitoid interactions as a model system, we tested the hypothesis whether intraspecific aggregation reflects an adaptive response to natural enemies. Most of the studies that have hitherto been carried out on Drosophila-parasitoid interactions used an almost two-dimensional artificial host environment, where host larvae could not escape from parasitoid attacks, and have demonstrated positive density-dependent parasitism risk. To test whether these studies captured the essence of such interactions, we used natural breeding substrates (decaying fruits). In a first step, we analysed the parasitism risk of Drosophila larvae on a three-dimensional substrate in natural fly communities in the field, and found that the risk of parasitism decreased with increasing host larval density (inverse density dependence). In a second step, we analysed the parasitism risk of Drosophila subobscura larvae on three breeding substrate types exposed to the larval parasitoids Asobara tabida and Leptopilina heterotoma. We found direct density-dependent parasitism on decaying sloes, inverse density dependence on plums, and a hump-shaped relationship between fly larval density and parasitism risk on crab apples. On crab apples and plums, fly larvae benefited from a density-dependent refuge against the parasitoids. While the proportion of larvae feeding within the fruit tissues increased with larval density, larvae within the fruit tissues were increasingly less likely to become victims of parasitoids than those exposed at the fruit surface. This suggests a facilitating effect of group-feeding larvae on reaching the spatial refuge. We conclude that spatial aggregation in Drosophila communities can at least in part be explained as a predator avoidance strategy, whereby natural enemies act as selective agents maintaining spatial patterns of resource utilisation in their host communities.  相似文献   

14.
Abstract 1. Aggregation pheromones can evolve when individuals benefit from clustering. Such a situation can arise with an Allee effect, i.e. a positive relationship between individual fitness and density of conspecifics. Aggregation pheromone in Drosophila induces aggregated oviposition. The aim of the work reported here was to identify an Allee effect in the larval resource exploitation by Drosophila melanogaster, which could explain the evolution of aggregation pheromone in this species. 2. It is hypothesised that an Allee effect in D. melanogaster larvae arises from an increased efficiency of a group of larvae to temper fungal growth on their feeding substrate. To test this hypothesis, standard apple substrates were infested with specified numbers of larvae, and their survival and development were monitored. A potential beneficial effect of the presence of adult flies was also investigated by incubating a varying number of adults on the substrate before introducing the larvae. Adults inoculate substrates with yeast, on which the larvae feed. 3. Fungal growth was related negatively to larval survival and the size of the emerging flies. Although the fungal growth on the substrate was largely reduced at increased larval densities, the measurements of fitness components indicated no Allee effect between larval densities and larval fitness, but rather indicated larval competition. 4. In contrast, increased adult densities on the substrates prior to larval development yielded higher survival of the larvae, larger emerging flies, and also reduced fungal growth on the substrates. Hence, adults enhanced the quality of the larval substrate and significant benefits of aggregated oviposition in fruit flies were shown. Experiments with synthetic pheromone indicated that the aggregation pheromone itself did not contribute directly to the quality of the larval resource. 5. The interaction among adults, micro‐organisms, and larval growth is discussed in relation to the consequences for total fitness.  相似文献   

15.
16.
Herbivorous insects may benefit from avoiding the smell produced by phytopathogens infecting plant host tissue if the infected tissue reduces insect fitness. However, in many cases the same species of phytopathogen can also infect host plant tissues that do not directly affect herbivore fitness. Thus, insects may benefit from differentiating between pathogen odors emanating from food and nonfood tissues. This is based on the hypothesis that unnecessarily staying attentive to pathogen odor from nonfood tissue may incur opportunity costs associated with not responding to other important survival functions. In this study adults of Drosophila suzukii Matsumura, an invasive larval frugivore, showed reduced attraction to the odor of raspberry fruit, a food tissue, when infected with Botrytis cinerea Pers., a ubiquitous phytopathogen, in favor of odors of uninfected raspberry fruit. Moreover, D. suzukii oviposited fewer eggs on infected raspberry fruit relative to uninfected raspberry fruit. Larval survival and adult size after eclosion were significantly reduced when reared on B. cinerea‐infected raspberry relative to uninfected fruit. Interestingly, when the behavioral choice experiment was repeated using Botrytis‐infected vs. ‐uninfected strawberry leaves, a nonfood tissue, in combination with fresh raspberry fruit, odor from B. cinerea‐infected leaves did not reduce D. suzukii attraction to raspberries relative to raspberries with uninfected leaves. These behavioral results illustrate the important role context can play in odor‐mediated interactions between insects, plants and microbes. We discuss implications of our findings for developing a repellent that can be useful for the management of D. suzukii.  相似文献   

17.
In insects that utilize patchy and ephemeral resources for feeding and egg laying, the outcome of larval competition for food resources depends on the amount of resources and the spatial distribution of immatures among patches of food. In the present study, the results of larval competition for food in Chrysomya megacephala, in traits such as female weight, fecundity and reproductive investment, were different in situations where the level of larval aggregation (proportion of competitors per amount of food) was the same, but with densities of competitors and amounts of food proportionally different. These results are indicative that the larval competition may depend both on the larval density and the amount of food, in different situations with the same proportion of larvae per gram of food.  相似文献   

18.
The behavioural response of an insect to a fungal pathogen will have a direct effect on the efficacy of the fungus as a biological control agent. In this paper we describe two processes that have a significant effect on the interactions between insects and entomopathogenic fungi: (a) the ability of target insects to detect and avoid fungal pathogens and (b) the transmission of fungal pathogens between host insects. The behavioural interactions between insects and entomopathogenic fungi are described for a variety of fungal pathogens ranging from commercially available bio-pesticides to non-formulated naturally occurring pathogens. The artificial manipulation of insect behaviour using dissemination devices to contaminate insects with entomopathogenic fungi is then described. The implications of insect behaviour on the use of fungal pathogens as biological control agents are discussed.  相似文献   

19.
20.
Patch size is one of the most important factors affecting the distribution and abundance of species, and recent research has shown that patch size is an important niche dimension affecting community structure in aquatic insects. Building on this result, we examined the impact of patch size in conjunction with presence of larval anurans on colonization by aquatic insects. Hyla chrysoscelis (Cope''s gray treefrog) larvae are abundant and early colonists in fishless lentic habitats, and these larvae can fill multiple ecological roles. By establishing larvae in mesocosms prior to colonization, we were able to assess whether H. chrysoscelis larvae have priority effects on aquatic insect assemblages. We conducted a series of three experiments in naturally colonized experimental landscapes to test whether (1) H. chrysoscelis larval density affects insect colonization, (2) variation in patch size affects insect colonization, and (3) the presence and larval density of H. chrysoscelis shift colonization of insects between patches of different size. Larval density independently had almost no effect on colonization, while patch size had species‐specific effects consistent with prior work. When larvae and patch size were tested in conjunction, patch size had numerous, often strong, species‐specific effects on colonization; larval density had effects largely limited to the assemblages of colonizing beetles and water bugs, with few effects on individual species. Higher larval densities in large mesocosms shifted some insect colonization to smaller patches, resulting in higher beta diversity among small patches in proximity to high density large mesocosms. This indicates establishing H. chrysoscelis larvae prior to insect colonization can likely create priority effects that slightly shape insect communities. Our results support the importance of patch size in studying species abundances and distributions and also indicate that colonization order plays an important role in determining the communities found within habitat patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号