首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arthrocnemum macrostachyum, is a perennial halophytic shrub typical of Mediterranean salt marshes. The present study aims to investigate some combinations of inter simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) primers applied in real PCR. Thereby, the potential of R-ISSR markers to detect new genomic loci in 3 genotypes of A. macrostachyum grown in the Western coast of Syria was examined. Different combinations of RAPD and ISSR primers produced bands that were absent when single ISSR or RAPD primers were used. The results have demonstrated that ISSR primer (AG)8TC gave more informative pattern when combined with different RAPD primers comparing to other tested primers. In contrast, the tested ISSR primer (GACA)4 gave less informative pattern when used alone. These combinations were successfully applied in real PCR to detect new genomic variability in A. macrostachyum genotypes.  相似文献   

2.
R-ISSR as a new tool for genomic fingerprinting, mapping, and gene tagging   总被引:1,自引:0,他引:1  
In the present study we propose and test the concept of R-ISSR, a new tool for genomic fingerprinting, mapping, and gene tagging. The concept is based on the fact that primers for inter-simple sequence repeat (ISSR) and random-amplified polymorphic DNA (RAPD) analysis elicit different genomic information, and the combined use of these 2 kinds of primers in the same polymerase chain reaction (PCR) reactions might reveal new genomic loci that could not be detected with either technique alone. The feasibility of this tool was first electronically simulated with sequence analysis software andArabidopsis chromosome sequence. Next, different combinations of ISSR and RAPD primers were applied in real PCR reactions to detect new genomic loci in 2 maize lines (Q319 and 1145). Sequencing gels were used to separate PCR products and showed good resolving ability in comparison with agarose gels. RAPD primers could be successfully used with ISSR primers for the detection of new genomic loci and applied in a new way for genomic mapping, fingerprinting, and gene tagging.  相似文献   

3.
The genetic variability and relationships among 20 Mangifera indica genotypes representing 15 endangered and 5 cultivars, obtained from Indian Gir forest region, were analyzed using 10 random amplified polymorphic DNA (RAPD) and 21 inter simple sequence repeat (ISSR) markers. RAPD markers were more efficient than the ISSR assay with regards to polymorphism detection. Also, the average numbers of polymorphic loci per primer, average polymorphic information content (PIC) and primer index (PI) values were more for RAPD than for ISSR. But, total number of genotype specific marker loci, Nei’s genetic diversity (h), Shannon’s information index (I), total heterozygosity (Ht), average heterozygosity (Hs) and mean coefficient of gene differentiation (Gst) were more for ISSR as compared to RAPD markers. The regression test between the two Nei’s genetic diversity indexes showed low regression between RAPD and ISSR based similarities but maximum for RAPD and RAPD + ISSR based similarities. The pattern of clustering of genotypes within groups was not similar when RAPD and ISSR derived dendrogram were compared. Thus, both the markers were equally important for genetic diversity analysis in M. indica.  相似文献   

4.
Inter-simple sequence repeat (ISSR) analysis was evaluated for its usefulness in generating markers to extend the genetic linkage map of Citrus using a backcross population previously mapped with restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD) and isozyme markers. ISSR markers were obtained through the simple technique of PCR followed by analysis on agarose gels, using simple sequence repeat (SSR) primers. Optimization of reaction conditions was achieved for 50% of the SSR primers screened, and the primers amplified reproducible polymorphic bands in the parents and progeny of the backcross population. Mendelian segregation of the polymorphic bands was demonstrated, with an insignificant number of skewed loci. Most of the SSR primers produced dominant loci; however co-dominance was observed with loci derived from three primers. A new genetic map was produced by combining the segregation data for the ISSR markers and data for the RFLP, RAPD and isozyme markers from the previous map and creating genetic linkages among all the markers using JoinMap 2.0 mapping software. The new map has an improved distribution of markers along the linkage groups with fewer gaps, and marker order showed partial or complete conservation in the linkage groups. The incorporation of ISSR markers into the genetic linkage map demonstrates that ISSR markers are suitable for genetic mapping in Citrus. Received: 3 February 2000 / Accepted: 12 May 2000  相似文献   

5.
Shisham (Dalbergia sissoo) is one of the most preferred timber tree species of South Asia. Two DNA-based molecular marker techniques, intersimple sequence repeat (ISSR) and random amplified polymorphism DNA (RAPD), were compared to study the genetic diversity in this species. A total of 30 polymorphic primers (15 ISSR and 15 random) were used. Amplification of genomic DNA of 22 genotypes, using ISSR analysis, yielded 117 fragments, of which 64 were polymorphic. Number of amplified fragments with ISSR primers ranged from five to ten and varied in size from 180 to 1,900 bp. Percentage polymorphism ranged from 0 to 87.5. The 15 RAPD primers produced 144 bands across 22 genotypes, of which 84 were polymorphic. The number of amplified bands varied from five to 13, with size range from 180 to 2,400 bp. Percentage polymorphism ranged from 0 to 100, with an average of 58.3 across. RAPD markers were relatively more efficient than the ISSR assay. The mental test between two Jaccard’s similarity matrices gave r ≥ 0.90, showing very good fit correlation in between ISSR- and RAPD-based similarities. Clustering of isolates remained more or less the same in RAPD and combined data of RAPD and ISSR. The similarity coefficient ranged from 0.734 to 0.939, 0.563 to 0.946, and 0.648 to 0.920 with ISSR, RAPD, and combined dendrogram, respectively.  相似文献   

6.
Fifty-seven genotypes from eight population of Satureja bachtiarica was evaluated using fifteen ISSR and eleven RAPD markers. DNA profiling using RAPD primers amplified 84 loci, among which 81 were polymorphic with an average of 7.36 polymorphic fragments per locus. Also, using RAPD markers maximum and minimum polymorphic bands observed for Semyrom (77.38 %) and Farsan (40.48 %) populations, respectively. Semyrom population recorded the highest unbiased expected heterozygosity (0.259) and Shannon’s Indices (0.38). While, the lowest values of unbiased expected heterozygosity (0.172) and Shannon’s Index (0.245) were recorded for Eghlid and Farsan populations, respectively. On the other hand, ISSR primers produced 136 bands, from which 134 were polymorphic with an average of 9.06 polymorphic fragments per primer (98.52 %). The ISSR markers evaluation revealed that maximum and minimum polymorphic bands observed for Semyrom (66.18 %) and Farsan (31.62 %), respectively. Shahrekorud population recorded the highest unbiased expected heterozygosity (0.211) and Shannon’s Indices (0.301). While, the lowest value of unbiased expected heterozygosity (0.175) observed for Farsan and Yazd populations and the lowest Shannon’s Index (0.191) recorded by Farsan population. The overall results of the study revealed that both ISSR and RAPD markers were effective for evaluation of genetic variation of S. bachtiarica.  相似文献   

7.
Forty-two genotypes representing oilseed Brassica species were analyzed for the level of genetic diversity and molecular identity using Random Amplified Polymorphic DNA (RAPD), Inter-Simple Sequence Repeat (ISSR) and 5'-Anchored Simple Sequence Repeat (ASSR) markers. DNA profiles revealed high degree of interspecific polymorphism, while the level was considerably low within a species, particularly in B. juncea. The UPGMA clusters clearly delineated genotypes of the respective Brassica species. Comparison of cophenetic matrices indicated a high degree of correspondence between dendrograms generated by different marker systems. A minimum of 10 random primers (approximately 105 bands) were required for the RAPD profiles to generate the expected cluster. Comparatively less number of primers was required to do the same in case of ISSR (4 primers) and ASSR (3 primers). The principal component analysis revealed similar genetic relationship among the genotypes as in cluster analysis. Although none of the DNA profiles could individually identify all the B. juncea genotypes, a combined DNA profile consisting 125 markers from the informative primers of all the three DNA marker systems could do the same. A positive correlation was found among the marker utility parameters (calculated for individual primers of different marker systems) such as marker index (MI), resolving power (Rp) and discrimination coefficient (D) with the number of genotypes identified by each primer with a few exceptions. Single plant analysis for a set of five B. juncea varieties revealed absence of intra-varietal heterogeneity in case of ASSR profiles, thereby suggesting its utility in varietal identification and differentiation.  相似文献   

8.
Genetic diversity among 47 ber accessions belonging to cultivated species (Ziziphus mauritiana Lam) and one wild accession of Ziziphus nummularia (Burm F) Willed was investigated using Inter-Simple Sequence Repeat (ISSR) markers. A total of 167 amplification products were detected with 18 ISSR primers of which 152 (89.96%) were polymorphic. Most of the primers that produced distinct bands (14 primers out of 18) contained dinucleotide repeats. Primers based on (AC)n and (AG)n repeats produced more polymorphic bands. Genetic similarity ranging from 43.07% to 90.30% suggested that the 48 Ziziphus genotypes used in the study were divergent. Cluster analysis based on UPGMA method and Bootstrap analysis separated all the 48 genotypes in four distinct clusters. The present study has successfully distinguished morphologically similar genotypes that emphasize the use of molecular markers to the taxonomists. Morphologically similar but genetically distinct genotypes, identified using ISSR markers could be potential sources for genotype identification and to resolve controversies over misnomination of ber genotypes. Present study is the first report on the exploitation of ISSR markers in ber for genetic diversity analysis.  相似文献   

9.
In crosses between hexaploid wheat and inbred lines of rye, a small number of rye genotypes produce seeds carrying undifferentiated, non-viable embryos. Hybrids between such lines and those not showing this phenotype were used as pollen donors in crosses with bread wheat in order to determine the genetic basis of disturbed embryo development. A single gene, designated Eml-R1b, is causing this character. Molecular markers associated with F2 genotypes derived from a contrasting rye inbred progeny were used for a linkage study. Recombinant inbred lines of an F5 population served as testers. Eml-R1b maps to chromosome arm 6RL, along with two co-segregating microsatellite loci, Xgwm1103 and Xgwm732. Complementary interactions of deleterious genes in wheat and rye are discussed.  相似文献   

10.
 Inter-simple sequence repeat polymorphic DNA (ISSR) was evaluated for its applicability as a genetic marker system in wheat. PCR was carried out with primers that annealed to simple sequence repeats. The resultant products were subjected to agarose-gel electrophoresis, and the banding patterns were compared among six wheat accessions containing diploid, tetraploid, and hexaploid members. Out of 100 examined, 33 primers produced distinguishable as well as polymorphic bands in each of the six accessions. Although most of the primers that gave distinct bands (30 primers out of 33) contained dinucleotide repeats, each of the primers with tri-, tetra-, and penta-nucleotide motifs also yielded discrete bands. Primers based on (AC)n repeats gave the most polymorphic bands. In total, 224 polymorphic bands were found in the comparison between Einkorn wheats whereas, on the average, 120 polymorphic bands were detected between common wheats. ISSR primers produced several times more information than RAPD markers. The extent of band polymorphism was similar to that of RFLP markers, and greater than that of RAPDs. The genetic relationships of wheat accessions estimated by the polymorphism of ISSR markers were identical with those inferred by RFLP and RAPD markers, indicating the reliability of ISSR markers for estimation of genotypes. These polymorphic bands are potential candidates as novel markers for use in linkage-map construction in wheat. The characteristic features of ISSR markers, i.e. polymorphism, generation of information and ease of handling, suggest their applicability to the analysis of genotypes as well as to the construction of PCR-based genome maps of wheats. Received: 15 September 1996 / Accepted: 25 October 1996  相似文献   

11.
The phylogenetic relationships of 36 locally grown Prunus armeniaca genotypes which are collected from nine sampling sites from two valleys viz. Nubra (9,600 ft) and Leh (11,500 ft) of trans-Himalayan region were analyzed using 31 PCR markers (20 RAPDs and 11 ISSRs). This is the first report of molecular genetic diversity studies in apricot from this region of the world. RAPD analysis yielded 139 fragments, of which 136 were polymorphic, with an average of 6.8 polymorphic fragments per primer. ISSR analysis produced 58 bands, of which 56 were polymorphic, with an average of 5.09 polymorphic fragments per primer. The primers based on (CT)n produced maximum number of bands (nine) while, (AT)n and many other motifs gave no amplification. RAPD markers were found more efficient with regards to polymorphism detection, as they detected 97.84 % as compared to 96.5 % for ISSR markers. Clustering of genotypes within groups was not similar when RAPD and ISSR derived dendrogram were compared, whereas the pattern of clustering of the genotypes remained more or less the same in RAPD and combined data of RAPD + ISSR. The results of PCA analysis were comparable to the cluster analysis. These analyses, allowed us to identify the groups corresponding to the two apricot collection sites.Key words: Prunus armeniaca, Apricot, Genetic Diversity, RAPD, ISSR, AMOVA  相似文献   

12.
Tribulus terrestris is well known for its medicinal importance in curing urino-genital disorders. Amplified fragment length polymorphism (AFLP), selective amplification of microsatellite polymorphic loci (SAMPL), inter-simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) markers were used for the first time for the detection of genetic polymorphism in this medicinal herb from samples collected from various geographical regions of India. Six assays each of AFLP and SAMPL markers and 21 each of ISSR and RAPD markers were utilized. AFLP yielded 500 scorable amplified products, of which 82.9% were polymorphic. SAMPL primers amplified 488 bands, 462 being polymorphic (94.7%). The range of amplified bands was 66 [(TC)8G + M-CAG] to 98 [(CA)6AG + M-CAC] and the percentage polymorphism, 89.9 [from (CT)4C (AC)4A + M-CTG] to 100 [from (GACA)4 + M-CTA]. The ISSR primers amplified 239 bands of 0.4–2.5 kb, 73.6% showed polymorphism. The amplified products ranged from 5 to 16 and the percentage polymorphism 40–100. RAPD assays produced 276 bands, of which 163 were polymorphic (59%). Mantel test employed for detection of goodness of fit established cophenetic correlation values above 0.9 for all the four marker systems. The dendrograms and PCA plots derived from the binary data matrices of the four marker systems are highly concordant. High bootstrap values were obtained at major nodes of phenograms through WINBOOT software. The relative efficiency of the four molecular marker systems calculated on the basis of multiplex ratio, marker index and average heterozygosity revealed SAMPL to be the best. Distinct DNA fingerprinting profile, unique to every geographical region could be obtained with all the four molecular marker systems. Clustering can be a good indicator for clear separation of genotypes from different regions in well-defined groups that are supported by high bootstrap values.  相似文献   

13.
This study presents an attempt to supply breeders of hybrid rye with more genetic information on inbred lines, using molecular markers. Eighteen polymorphic loci detected by means of the RAPD (Random Amplified Polymorphic DNA) technique and mapped on 2R-7R rye chromosomes, were applied to study genetic similarities among forty inbred lines of rye. The lines were grouped in four main clusters revealed on dendrogram, which was generally consistent with the pedigree data. Mapped RAPD markers were shown to be a useful tool for phenetic studies in rye. Additionally, a system of 20 polymorphic fragments, detected by three primers, was developed for fingerprinting of rye lines. The system of RAPD markers, which was developed in this study, should be helpful in characterisation of rye genetic stocks used for breeding.  相似文献   

14.
To identify the powdery mildew (PM) resistance gene in mungbean, inter-simple sequence repeat (ISSR) markers and newly developed ISSR-anchored resistance gene analog (ISSR-RGA) markers were evaluated. When F2:7 and F2:8 recombinant inbred line populations derived from a cross between CN72 (susceptible cultivar in Thailand) and V4718 (resistant line from Asian Vegetable Research and Development Center) were evaluated for PM resistance under field conditions, the PM resistance gene from V4718 was found to be inherited as a single major gene. Fifteen out of 75 ISSR primers produced 27 DNA bands putatively associated with PM resistance in bulk segregant analysis (BSA). Ten ISSR primers were combined with four RGA primers homologous to the nucleotide-binding site and kinase domains of resistance (R) genes to generate 40 ISSR-RGA primer combinations. When these 40 ISSR-RGA primer combinations and 10 corresponding ISSR primers were used in BSA, 873 ISSR and 756 ISSR-RGA loci were amplified. Fifty-two of 756 ISSR-RGA loci were new, and 11 of these 23 ISSR-RGA loci were putatively associated with the PM resistance. Simple linear regression confirmed that 5 of the 27 ISSR markers and 3 of the 11 ISSR-RGA markers were significantly associated with the PM resistance gene. When these eight ISSR and ISSR-RGA markers were used for quantitative trait loci (QTL) analysis, multiple interval mapping identified a major QTL, qPMC72V18-1, explaining up to 92.4% of the phenotypic variation, flanked by I42PL229 and I85420 markers at the distance of 4 and 9 cM, respectively. These results suggest that ISSR and ISSR-RGA markers are highly efficient tools for mapping PM resistance gene in mungbean. The markers closely linked to the PM resistance gene will be useful for future marker-assisted selection to develop mungbean varieties resistant to PM.  相似文献   

15.
Genetic diversity and phylogenetic analyses of 24 species, representing nine sections of the genus Galium (Rubiaceae), have been made using the Inter Simple Sequence Repeats (ISSR), Randomly Amplified Polymorphic DNA (RAPD), and combined ISSR and RAPD markers. Four ISSR primers and three RAPD primers generated 250 polymorphic amplified fragments. The results of this study showed that the level of genetic variation in Galium is relatively high. RAPD markers revealed a higher level of polymorphism (158 bands) than ISSR (92 bands). Clustering of genotypes within groups was not similar when RAPD and ISSR derived dendrograms were compared. Six clades can be recognized within Galium, which mostly corroborate, but also partly contradict, traditional groupings. UPGMA-based dendrogram showed a close relationship between members of section Leiogalium with G. verum and G. humifusum (sect. Galium), and G. angustifolium (sect. Lophogalium). Principal coordinated analysis, however, showed some minor differences with UPGMA-based dendrograms. The more apomorphic groups of Galium form the section Leiogalium clade including the perennial sections Galium, Lophogalium, Jubogalium, Hylaea and Leptogalium as well as the annual section Kolgyda. The remaining taxa of Galium are monophyletic.  相似文献   

16.
Aerides maculosum Lindl is one of the most important orchids valued for its beautiful inflorescence/flowers. The present study aimed to understand the level of genetic variation among the populations of A. maculosum using RAPD and ISSR markers. Among the 35 primers tested, 13 RAPD and 6 ISSR primers were selected for the analysis. Total of 101 RAPD and 40 ISSR fragments were generated. High level of polymorphism was recorded in RAPD (90.45%) compared to ISSR (72.85 %). Nei’s average genetic identity values for different populations of A. maculosum- ranged from 0.465 to 0.762 (RAPD), while for ISSR it ranged from 0.475 to 0.975. The present study provides important insights about genetic variation in A. masculosum and may facilitates the conservation and management of this species.  相似文献   

17.
RFLP-based genetic map of rye, developed previously using a cross of lines DS2×RXL10 (F2 generation), was extended with 69 RAPD and 12 isozyme markers. The actual map contains 282 markers dispersed on all seven chromosomes and spans a distance of 1,140 cM. The efficiency of mapping RAPD markers was close to ten loci per 100-screened arbitrary primers. A strong selection of polymorphic, intensive and reproducible fragments was necessary to reveal individual marker loci that could be assigned to rye chromosomes. Newly mapped markers cover a substantial part of the rye genome and constitute a valuable tool suitable for map saturation, marker-aided selection and phenetic studies. A specific nomenclature for the RAPD loci mapped on individual rye chromosomes, which could be helpful in managing of accumulating data, is proposed. Received: 8 May 2000 / Accepted: 17 October 2000  相似文献   

18.
The silkworm B. mori is a multicellular organism revealing genetic resources which makes an ideal model for lepidoptera for the present investigation. With the objective of targeting distinctive markers for utilization in future breeding programmes, Bivoltine and Polyvoltine silkworm strains were used by inter-simple sequence repeats (ISSR) and random amplified polymorphic-DNA (RAPD) fingerprinting to detect their genetic versatility and volatility. Six ISSR primers generated 99 markers, of which 76.76% were found to be polymorphic with an average number of observed alleles (N a) (1.86 ± 0.40), an effective number of alleles (N e) (1.43 ± 0.30) as well as six RAPD primers that produced a total of 95 bands, developing 61.05% polymorphism with N a (1.93 ± 0.51) and N e (1.18 ± 0.30). The dendrogram produced by UPGMA analysis, based on Dice’s coefficient, clustered four races into two major groups which accurately segregated them according to their inheritance of voltinism. In this research, the ISSR markers were more accurate than the RAPD markers and ISSR also displayed better polymorphism. The outcome showed that the bivoltine strains exhibited higher allelic expressions with ISSR primers when compared to the polyvoltine strains. Despite exhibiting their unique race by certain DNA markers, most of the primers represented voltinism-specificity. Hence molecular marker amplification is a beneficial approach to reveal genetic divergence among closely related strains, and molecular characterization of phylogenetic relationships in addressing evolutionary evidences of individuals.  相似文献   

19.
Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to study the DNA polymorphism in elite blackgram genotypes. A total of 25 random and 16 ISSR primers were used. Amplification of genomic DNA of the 18 genotypes, using RAPD analysis, yielded 104 fragments that could be scored, of which 44 were polymorphic, with an average of 1.8 polymorphic fragments per primer. Number of amplified fragments with random primers ranged from two (OPA-13) to nine (OPK-4) and varied in size from 200 bp to 2,500 bp. Percentage polymorphism ranged from 16.6% (OPK-7) to a maximum of 66.6% (OPE-5, OPH-2, and OPK-8), with an average of 42.7%. The 16 ISSR primers used in the study produced 101 bands across 18 genotypes, of which 55 were polymorphic. The number of amplified bands varied from two (ISSR 858) to ten (ISSR 810), with a size range of 200–2,200 bp. The average numbers of bands per primer and polymorphic bands per primer were 6.3 and 3.4, respectively. Percentage polymorphism ranged from 25% (ISSR 885) to 100% (ISSR 858), with an average percentage polymorphism of 57.5% across all the genotypes. The 3-anchored primers based on poly(GA) and poly(AG) motifs produced high average polymorphisms of 54.98% and 58.32%, respectively. ISSR markers were more efficient than the RAPD assay, as they detected 57.4% polymorphic DNA markers in Vigna mungo as compared to 42.7% for RAPD markers. The Mantel test between the two Jaccards similarity matrices gave r =0.32, showing low correlation between RAPD- and ISSR-based similarities. Clustering of genotypes within groups was not similar when RAPD and ISSR derived dendrogram were compared, whereas the pattern of clustering of the genotypes remained more or less the same in ISSR and combined data of RAPD and ISSR.  相似文献   

20.
The determination of genetic differences among crop genotypes has become the primary need to grant patent and the protection of Plant Breeder Rights (PBR). In the present study RAPD and ISSR markers were employed for the characterization of 16 sesame genotypes. Twenty six RAPD and 17 ISSR primers that generated clear and reproducible banding patterns amplified 194 and 163 bands, respectively among 16 sesame genotypes. Both RAPD and ISSR primers showed maximum discrimination power, and produced putative variety specific bands, which could be used for the identification of all the sesame genotypes, individually. However, only AG and CA based ISSR primers were found effective in the discrimination of genotypes. A poor correlation was observed between the matrices produced by RAPD and ISSR primers, which might be due to the array of different sites of the genome. Though, there was greater similarity among sesame genotypes (0.78 for RAPD and 0.71 for ISSR), the observed genetic diversity (0.22 for RAPD and 0.29 for ISSR), was found effective for the characterization of sesame genotypes. It is suggested that putative variety specific RAPD and ISSR markers could be converted to Codominant sequence characterized amplified region/sequence tagged site (SCAR /STS) markers to develop robust variety specific markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号