首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Historically, comparisons of host and parasite phylogenies have concentrated on cospeciation. However, many of these comparisons have demonstrated that the phylogenies of hosts and parasites are seldom completely congruent, suggesting that phenomena other than cospeciation play an important role in the evolution of host-parasite assemblages. Other coevolutionary phenomena, such as host switching, parasite duplication (speciation on the host), sorting (extinction), and failure to speciate can also influence host-parasite assemblages. Using mitochondrial and nuclear protein-coding DNA sequences, I reconstructed the phylogeny of ectoparasitic toucan chewing lice in the Austrophilopterus cancellosus subspecies complex and compared this phylogeny with the phylogeny of the hosts, the Ramphastos toucans, to reconstruct the history of coevolutionary events in this host-parasite assemblage. Three salient findings emerged. First, reconstructions of host and louse phylogenies indicate that they do not branch in parallel, and their cophylogenetic history shows little or no significant cospeciation. Second, members of monophyletic Austrophilopterus toucan louse lineages are not necessarily restricted to monophyletic host lineages. Often, closely related lice are found on more distantly related but sympatric toucan hosts. Third, the geographic distribution of the hosts apparently plays a role in the speciation of these lice. These results suggest that for some louse lineages biogeography may be more important than host associations in structuring louse populations and species, particularly when host life history (e.g., hole nesting) or parasite life history (e.g., phoresis) might promote frequent host switching events between syntopic host species. These findings highlight the importance of integrating biogeographic information into cophylogenetic studies.  相似文献   

2.
Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome‐wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex in Nicaragua is a powerful system for studying evolutionary processes. Independent colonizations of isolated young crater lakes by Midas cichlid populations from the older and great lakes of Nicaragua resulted in the repeated evolution of adaptive radiations by intralacustrine sympatric speciation. In this study we performed genome scans on two repeated radiations of crater lake species and their great lake source populations (1030 polymorphic AFLPs, n ~ 30 individuals per species). We detected regions under divergent selection (0.3% in the crater lake Xiloá flock and 1.7% in the older crater lake Apoyo radiation) that might be responsible for the sympatric diversifications. We find no evidence that the same genomic regions have been involved in the repeated evolution of parallel adaptations across crater lake flocks. However, there is some genetic parallelism apparent (seven out of 51 crater lake to great lake outlier loci are shared; 13.7%) that is associated with the allopatric divergence of both crater lake flocks. Interestingly, our results suggest that the number of outlier loci involved in sympatric and allopatric divergence increases over time. A phylogeny based on the AFLP data clearly supports the monophyly of both crater lake species flocks and indicates a parallel branching order with a primary split along the limnetic‐benthic axis in both radiations.  相似文献   

3.
We studied the phylogenetic relationships among Japanese Leptocarabus ground beetles, which show extensive trans-species polymorphisms in mitochondrial gene genealogies. Simultaneous analysis of combined nuclear data with partial sequences from the long-wavelength rhodopsin, wingless, phosphoenolpyruvate carboxykinase, and 28S rRNA genes resolved the relationships among the five species, although separate analyses of these genes provided topologies with low resolution. For both the nuclear gene tree resulting from the combined data from four genes and a mitochondrial cytochrome oxidase subunit I (COI) gene tree, we applied a Bayesian divergence time estimation using a common calibration method to identify mitochondrial introgression events that occurred after speciation. Three mitochondrial lineages shared by two or three species were likely subject to introgression due to interspecific hybridization because the coalescent times for these lineages were much shorter than the corresponding speciation times estimated from nuclear gene sequences. We demonstrated that when species phylogeny is fully resolved with nuclear gene sequence data, comparative analysis of nuclear and mitochondrial gene trees can be used to infer introgressive hybridization events that might cause trans-species polymorphisms in mitochondrial gene trees.  相似文献   

4.
First multilocus analysis of the largest Neotropical cichlid genus Crenicichla combining mitochondrial (cytb, ND2, 16S) and nuclear (S7 intron 1) genes and comprising 602 sequences of 169 specimens yields a robust phylogenetic hypothesis. The best marker in the combined analysis is the ND2 gene which contributes throughout the whole range of hierarchical levels in the tree and shows weak effects of saturation at the 3rd codon position. The 16S locus exerts almost no influence on the inferred phylogeny. The nuclear S7 intron 1 resolves mainly deeper nodes. Crenicichla is split into two main clades: (1) Teleocichla, the Crenicichla wallacii group, and the Crenicichla lugubris-Crenicichla saxatilis groups (“the TWLuS clade”); (2) the Crenicichla reticulata group and the Crenicichla lacustris group-Crenicichla macrophthalma (“the RMLa clade”). Our study confirms the monophyly of the C. lacustris species group with very high support. The biogeographic reconstruction of the C. lacustris group using dispersal-vicariance analysis underlines the importance of ancient barriers between the middle and upper Paraná River (the Guaíra Falls) and between the middle and upper Uruguay River (the Moconá Falls). Our phylogeny recovers two endemic species flocks within the C. lacustris group, the Crenicichla missioneira species flock and the herein discovered Crenicichla mandelburgeri species flock from the Uruguay and Paraná/Iguazú Rivers, respectively. We discuss putative sympatric diversification of trophic traits (morphology of jaws and lips, dentition) and propose these species flocks as models for studying sympatric speciation in complex riverine systems. The possible role of hybridization as a mechanism of speciation is mentioned with a recorded example (Crenicichla scottii).  相似文献   

5.
The habit of mining within leaves has evolved convergently in numerous plant-feeding insect taxa. Many leaf-mining groups contain a large number of species with distinct feeding preferences, which makes them highly suitable for studies on the evolutionary history of host-plant use and on the role of niche shifts in speciation. We aimed to clarify the origin, classification, and ecological evolution of the tenthredinid sawfly subfamily Heterarthrinae, which contains c. 150 leaf-mining species that collectively feed on over 20 plant genera around the world. For this, we reconstructed the phylogeny of representative heterarthrine species and diverse outgroups from the superfamily Tenthredinoidea on the basis of DNA sequence data collected from two mitochondrial (CoI and Cytb) and two nuclear (EF-1α and NaK) genes. Thereafter, we inferred the history of niche diversification within Heterarthrinae by plotting larval host-plant associations on the trees, and by contrasting a time-calibrated leaf-miner phylogeny with the phylogeny of their host plants. The results show that: (1) heterarthrine leaf-miners constitute a monophyletic group that arose from external-feeding blennocampine lineages within the Tenthredinidae c. 110-80 million years ago; (2) heterarthrines generally radiated well after their host taxa, and extant host-plant associations therefore result from a combination of host conservatism and occasional shifts among available plant taxa; and (3) diversification in Heterarthrinae apparently occurs by multiple mechanisms, including sympatric or allopatric ecological speciation, non-ecological allopatric speciation, and possibly allochronic speciation. Overall, both present and historical host-use patterns within the Heterarthrinae exhibit striking similarities to patterns found in co-occurring herbivore taxa.  相似文献   

6.
Nagata N  Kubota K  Yahiro K  Sota T 《Molecular ecology》2007,16(22):4822-4836
To reveal the role of diverged body size and genital morphology in reproductive isolation among closely related species, we examined patterns of, and factors limiting, introgressive hybridization between sympatric Ohomopterus ground beetles in central Japan using mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequences. We sampled 17 local assemblages that consisted of two to five species and estimated levels of interspecific gene flow using the genetic distance, D(A), and maximum-likelihood estimates of gene flow. Sharing of haplotypes or haplotype lineages was detected between six of seven species that occurred in the study areas, indicating mitochondrial introgression. The intensity and direction of mitochondrial gene flow were variable among species pairs. To determine the factors affecting introgression patterns, we tested the relationships between interspecific D(A) and five independent variables: difference in body size, difference in genital size, phylogenetic relatedness (nuclear gene sequence divergence), habitat difference, and species richness of the assemblage. Body and genital size differences contributed significantly to preventing gene flow. Thus, mechanical isolation mechanisms reduce the chance of introgressive hybridization between closely related species. Our results highlight the role of morphological divergence in speciation and assemblage formation processes through mechanical isolation.  相似文献   

7.
Although reinforcement should enhance reproductive barriers in sympatric species, sympatric trout species do hybridize. Using mitochondrial and nuclear species markers, we investigated hybridization directionality, hybrid mating biases, and selection against hybrids in 13 sympatric cut-throat and rainbow trout populations on Vancouver Island, Canada. Approximately 50% of the genotyped fish were hybrid (F1 or higher-order) and populations ranged from very recent (all F1 hybrids) to extremely advanced higher-order hybridization. Overall, interbreeding was reciprocal, although some populations showed directional hybridization. Pronounced cytonuclear disequilibrium in post-F1 hybrids indicated a remarkable mating bias not previously reported, which is most likely because of behavioural reproductive preferences. Selection against hybrids was observed in only two populations, indicative of extrinsic selection. Two populations were 'hybrid swarms', with a complete loss of reproductive isolation. The complex hybridization dynamics in this system represent a valuable natural experiment of the genetic and evolutionary implications of recent and on-going interspecific hybridization.  相似文献   

8.
Although there is mounting evidence that speciation can occur under sympatric conditions, unambiguous examples from nature are rare and it is almost always possible to propose alternative allopatric or parapatric scenarios. To identify an unequivocal case of sympatric speciation it is, therefore, necessary to analyse natural settings where recent monophyletic species flocks have evolved within a small and confined spatial range. We have studied such a case with a cichlid species flock that comprises five Tilapia forms endemic to a tiny lake (Lake Ejagham with a surface area of approximately 0.49 km2) in Western Cameroon. Analysis of mitochondrial D-Loop sequences shows that the flock is very young (approximately 10(4) years) and has originated from an adjacent riverine founder population. We have focused our study on a particular pair of forms within the lake that currently appears to be in the process of speciation. This pair is characterized by an unique breeding colouration and specific morphological aspects, which can serve as synapomorphic characters to prove monophyly. It has differentiated into a large inshore and a small pelagic form, apparently as a response to differential utilization of food resources. Still, breeding and brood care occurs in overlapping areas, both in time and space. Analysis of nuclear gene flow on the basis of microsatellite polymorphisms shows a highly restricted gene flow between the forms, suggesting reproductive isolation between them. This reproductive isolation is apparently achieved by size assortative mating, although occasional mixed pairs can be observed. Our findings are congruent with recent theoretical models for sympatric speciation, which show that differential ecological adaptations in combination with assortative mating could easily lead to speciation in sympatry.  相似文献   

9.
Molecular study of mitochondrial and nuclear genes and cytogenetic analysis were performed to examine possible patterns of speciation in the diverse Lophuromys flavopunctatus species complex of Ethiopia. Phylogenetic analysis of mtDNA data resulted in an unresolved bush of ten deeply diverged haplotype groups corresponding to potential species either well supported by various types of character or 'cryptic'. The cytogenetic analysis showed representatives of five of these mtDNA lineages to share an identical karyotype (2 n  = 70, NFa = 84), that has not been found previously in Ethiopia. One of them, L.  cf.  sikapusi , being a member of the L. flavopunctatus species complex, demonstrates remarkable morphological similarity to representatives of another species complex, L. sikapusi s.l ., which might be considered as a result of convergent evolution in analogous environments. Analysis of RAPD data suggests that at least two mtDNA types might have been subject to interspecific transfer due to hybridization. In the case of two sympatric haplotypes of L. brunneus we may assume that the contemporary pattern of variation between them can be explained by relatively recent hybridization with another distinct species, L. flavopunctatus . The formation of two groups belonging to distinct mitochondrial lineages within northern populations could be associated with more complex processes including ancient hybridization.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 301–316.  相似文献   

10.
11.
The history of life has been marked by several spectacular radiations, in which many lineages arise over a short period of time. A possible consequence of such rapid splitting in the recent past is that the intrinsic barriers that prevent gene flow between many species may have too little time to develop fully, leading to extensive hybridization among recently evolved lineages. The salamander genus Plethodon in eastern North America has been proposed as a possible example of this scenario, but without explicit statistical tests. In this paper, we present a nearly comprehensive phylogeny for the 45 extant species of eastern Plethodon, based on DNA sequences of mitochondrial (two genes, 1335 base pairs) and nuclear genes (two genes, up to 3481 base pairs). We then use this phylogeny to examine rates and patterns of diversification and hybridization. We find significantly rapid diversification within the glutinosus species group. Examining patterns of natural hybridization in light of the phylogeny shows considerable hybridization within this clade, including introgression between species that are morphologically distinct and distantly related. Reproductive isolation increases over time and may be very weak among the most recently diverged species. These results suggest that the origin of species and the evolution of intrinsic reproductive isolating mechanisms, rather than being synonymous, may be decoupled in some cases (i.e., rapid origin of lineages outstrips the "speciation clock"). In contrast to the conclusions of a recent review of adaptive radiation and hybridization, we suggest that extensive hybridization sometimes may be a consequence, rather than a cause, of rapid diversification.  相似文献   

12.
Hypotheses for the origin and maintenance of sexual size dimorphism (SSD) fall into three primary categories: (i) sexual selection on male size, (ii) fecundity selection on female size and (iii) ecological selection for gender‐specific niche divergence. We investigate the impact of these forces on SSD evolution in New World pitvipers (Crotalinae). We constructed a phylogeny from up to eight genes (seven mitochondrial, one nuclear) for 104 species of NW crotalines. We gathered morphological and ecological data for 82 species for comparative analyses. There is a strong signal of sexual selection on male size driving SSD, but less evidence for fecundity selection on female size across lineages. No support was found for allometric scaling of SSD (Rensch's rule), nor for directional selection for increasing male size (the Fairbairn–Preziosi hypothesis) in NW crotalines. Interestingly, arboreal lineages experience higher rates of SSD evolution and a pronounced shift to female‐biased dimorphism. This suggests that fecundity selection on arboreal females exaggerates ecologically mediated dimorphism, whereas sexual selection drives male size in terrestrial lineages. We find that increasing SSD in both directions (male‐ and female‐biased) decreases speciation rates. In NW crotalines, it appears that increasing magnitudes of ecologically mediated SSD reduce rates of speciation, as divergence accumulates within species among sexes, reducing adaptive divergence between populations leading to speciation.  相似文献   

13.
Switches from migratory (diadromous) to nonmigratory (freshwater) life histories are known to have occurred repeatedly in some aquatic taxa. However, the significance of the loss of diadromy as an initiator for speciation remains poorly understood. The rivers of New Zealand's South Island house a species flock of recently derived nonmigratory galaxiid fishes known as the Galaxias vulgaris complex. Members of this complex are morphologically and genetically similar to the diadromous G. brevipinnis found in New Zealand and southeastern Australia. We hypothesised that South Island's G. vulgaris complex (at least 10 nonmigratory lineages) represents a number of independent radiations from a migratory G. brevipinnis stock, with repeated loss of diadromy. Sequence data were obtained for 31 ingroup samples (G. vulgaris complex and G. brevipinnis) plus four outgroup taxa. A well-resolved phylogeny based on 5039 base pairs of the mitochondrial genome suggests that diadromy has been lost on three separate occasions. Thus, speciation in these galaxiid fishes is partly an incidental phenomenon caused by switches from diadromous to nonmigratory strategies. However, much of the subsequent nonmigratory diversity is monophyletic, suggesting that drainage evolution (vicariance) has also played a major role in cladogenesis. Levels of sequence divergence among major ingroup lineages (1.6-12.7%) suggest that the radiation is considerably older relative to Northern Hemisphere (postglacial) complexes of salmonid, osmerid, and gasterosteid fishes. Sympatric taxa are not monophyletic, suggesting that their coexistence reflects secondary contact rather than sympatric speciation. The monophyly of New Zealand G. brevipinnis is well supported, but both mitochondrial DNA and nuclear sequences indicate that G. brevipinnis is paraphyletic on an intercontinental scale. The divergence (maximum 11.5%) between Tasmanian and New Zealand G. brevipinnis, although large, supports marine dispersal rather than vicariance as the principle biogeographic mechanism on an intercontinental scale.  相似文献   

14.
The Cyprinodon species flock from Laguna Chichancanab, aged 8000 years, provides another potential case of sympatric speciation. The flock consists of seven morphologically distinct species, each within partially different trophic niches, and a group of specimens which cannot unequivocally be assigned to one of these species. Genetic analyses, based on mtDNA and five microsatellite loci, revealed significant genetic differentiation of one species, C. maya, from other members of the species flock, providing strong evidence for reproductive isolation. For the remaining members of the flock significant genetic structuring was detected, with some evidence of gene flow with the most abundant species C. beltrani. These analyses suggest that speciation proceeds with ongoing hybridisation, and further suggest that the morphologically unidentifiable specimens found in the lake are probably hybrids. I propose that in the Cyprinodon species flock besides disruptive selection sexual selection plays an important part in achieving and maintaining reproductive isolation.  相似文献   

15.
Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister‐species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site‐associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister‐species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174–0.263 Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.  相似文献   

16.
The Japanese Islands have been largely isolated from the East Asian mainland since the Early Pleistocene, allowing the diversification of endemic lineages. Here, we explore speciation rates and historical biogeography of the ground beetles of the subgenus Ohomopterus (genus Carabus) based on nuclear and mitochondrial gene sequences. Ohomopterus diverged into 15 species during the Pleistocene. The speciation rate was 1.92 Ma(-1) and was particularly fast (2.37 Ma(-1)) in a group with highly divergent genitalia. Speciation occurred almost solely within Honshu, the largest island with complex geography. Species diversity is highest in central Honshu, where closely related species occur parapatrically and different-sized species co-occur. Range expansion of some species in the past has resulted in such species assemblages. Introgressive hybridization, at least for mitochondrial DNA, has occurred repeatedly between species in contact, but has not greatly disturbed species distinctness. Small-island populations of some species were separated from main-island populations only after the last glacial (or the last interglacial) period, indicating that island isolation had little role in speciation. Thus, the speciation and formation of the Ohomopterus assemblage occurred despite frequent opportunities for secondary contact and hybridization and the lack of persistent isolation. This radiation was achieved without substantial ecological differentiation, but with marked differentiation in mechanical agents of reproductive isolation (body size and genital morphology).  相似文献   

17.
ABSTRACT: BACKGROUND: The Pleistocene Ice Ages were the most recent geohistorical event of major global impact, but their consequences for most parts of the Southern hemisphere remain poorly known. We investigate a radiation of ten species of Sternopriscus, the most species-rich genus of epigean Australian diving beetles. These species are distinct based on genital morphology but cannot be distinguished readily by mtDNA and nDNA because of genotype sharing caused by incomplete lineage sorting. Their genetic similarity suggests a Pleistocene origin. RESULTS: We use a dataset of 3858 bp of mitochondrial and nuclear DNA to reconstruct a phylogeny of Sternopriscus using gene and species trees. Diversification analyses support the finding of a recent rapid speciation event with estimated speciation rates of up to 2.40 species per MY, which is considerably higher than the proposed average rate of 0.16 species per MY for insects. Additionally, we use ecological niche modeling and analyze data on habitat preferences to test for niche divergence between species of the recent Sternopriscus radiation. These analyses show that the species can be characterized by a set of ecological variables referring to habitat, climate and altitude. CONCLUSIONS: Our results suggest that the repeated isolation of populations in glacial refugia might have led to divergent ecological adaptations and the fixation of morphological traits supporting reproductive isolation and therefore may have promoted speciation. The recent Sternopriscus radiation fulfills many characteristics of a species flock and would be the first described example of an aquatic insect species flock. We argue that the species of this group may represent a stage in speciation past the species flock condition because of their mostly broad and often non-overlapping ranges and preferences for different habitat types.  相似文献   

18.
Biochemical methods can detect variation at individual genetic loci, making possible the direct assessment of natural hybridization and introgression between fish populations. Protein electro-phoresis has been used to confirm and extend knowledge of many situations where species hybrids have been detected by morphological analyses. New cases of natural hybridization, including some at the subspecies level, have also been identified. Biochemical studies have provided the first conclusive evidence of natural post F1 hybrids and of introgression between fish taxa. The strongest cases for introgression have used a combined analysis of nuclear protein genes and taxaspecific maternally inherited mitochondrial DNA variation. Information on the significance of introgression as a source of gene flow between taxa, particularly below the species level where sympatric subspecies and sibling species are involved, should expand in the future as the numbers and types of nuclear and mitochondrial DNA loci which can be assayed for variation increase. The full importance of introgressive hybridization in speciation may then be understood.  相似文献   

19.
Hybridization between sympatric species provides unique opportunities to examine the contrast between mechanisms that promote hybridization and maintain species integrity. We surveyed hybridization between sympatric coastal steelhead (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki) from two streams in Washington State, Olsen Creek (256 individuals sampled) and Jansen Creek (431 individuals sampled), over a 3-year period. We applied 11 O. mykiss-specific nuclear markers, 11 O. c. clarki-specific nuclear markers and a mitochondrial DNA marker to assess spatial partitioning among species and hybrids and determine the directionality of hybridization. F1 and post-F1 hybrids, respectively, composed an average of 1.2% and 33.6% of the population sampled in Jansen Creek, and 5.9% and 30.4% of the population sampled in Olsen Creek. A modest level of habitat partitioning among species and hybrids was detected. Mitochondrial DNA analysis indicated that all F1 hybrids (15 from Olsen Creek and five from Jansen Creek) arose from matings between steelhead females and cutthroat males implicating a sneak spawning behaviour by cutthroat males. First-generation cutthroat backcrosses contained O. c. clarki mtDNA more often than expected suggesting natural selection against F1 hybrids. More hybrids were backcrossed toward cutthroat than steelhead and our results indicate recurrent hybridization within these creeks. Age analysis demonstrated that hybrids were between 1 and 4 years old. These results suggest that within sympatric salmonid hybrid zones, exogenous processes (environmentally dependent factors) help to maintain the distinction between parental types through reduced fitness of hybrids within parental environments while divergent natural selection promotes parental types through distinct adaptive advantages of parental phenotypes.  相似文献   

20.
The concept of species flocks has been central to previous interpretations of patterns and processes of explosive species radiations within several groups of freshwater fishes. Here, molecular phytogenies of species-rich Sebastes rockfishes from the northeastern Pacific Ocean were used to test predictions of null theoretical models that assume random temporal placements of phylogenetic nodes. Similar appraisals were conducted using molecular data previously published for particular cichlid fishes in Africa that epitomize, by virtue of a rapid and recent radiation of species, the traditional concept of an intralacustrine “species flock.” As gauged by the magnitudes of genetic divergence in cytochrome b sequences from mitochondrial DNA, as well as in allozymes, most speciation events in the Sebastes complex were far more ancient than those in the cichlids. However, statistical tests of the nodal placements in the Sebastes phylogeny suggest that speciation events in the rockfishes were temporally nonrandom, with significant clustering of cladogenetic events in time. Similar conclusions also apply to an ancient complex of icefishes (within the Notothenioidei) analyzed in the same fashion. Thus, the rockfishes (and icefishes) may be interpreted as ancient species flocks in the marine realm. The analyses exemplified in this report introduce a conceptual and operational approach for extending the concept of species flocks to additional environmental settings and evolutionary timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号