首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some previous studies of photorespiration and glycolate oxidation were re-examined and correlated by infra-red CO2 analysis. Data about rate of photosynthesis and oxygen sensitivity indicated that complete inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1 dimethyl urea (DCMU) allowed dark respiration to continue in the light. Photorespiration was also inhibited. The oxygen sensitivity of glycolate-stimulated CO2 production was found to be compatible with the proposal that glycolate is a substrate of photorespiration. Both `in vivo' and `in vitro' studies of the alga Nitella flexilis have revealed a pathway of glycolate oxidation similar to that of higher plants. DCMU inhibition of photosynthesis by Nitella gave results similar to those for the monocotyledons tested. Under very low light intensity, carbon dioxide compensation in corn was measurable but was not sensitive to high oxygen concentration. It appears that the lack of photorespiration in this plant is not the end result of efficient internal recycling of CO2 to photosynthesis.  相似文献   

2.
The effects of temperature and photosynthetically active radiation levels on photorespiration were investigated in Panicum milioides Nees ex Trin. and Panicum schenckii Hack., species known to have low photorespiration rates and other characteristics intermediate between C3 and C4 species. Comparisons were made with the C3 grass species tall fescue (Festuca arundinacea Schreb.). An increase in temperature from 20 to 35 C raised photorespiration from 7.3 to 10.2 milligrams per square decimeter per hour in tall fescue, but the increase in P. schenckii was less than 1 milligram per square decimeter per hour. Increases in temperature caused much less change in CO2 compensation concentration in P. milioides and P. schenckii than in tall fescue, values of 160 microliters per liter being obtained in tall fescue at 40 C compared to about 40 microliters per liter for P. milioides and P. schenckii. Photorespiration in P. schenckii increased by only about 1 milligram CO2 per square decimeter per hour as the photosynthetically active radiation level was raised from 100 to 2,000 microEinsteins per square meter per second. Loss of CO2 into CO2-free air actually decreased from 2.2 to 1.0 milligrams per square decimeter per hour as the radiation level was raised from 100 to 1,100 microEinsteins per square meter per second but tended to rise again at 2,000 microEinsteins per square meter per second. In contrast, photorespiration in tall fescue tripled with radiation level over the same range, reaching a maximum value of 7.2 milligrams per square decimeter per hour as determined by extrapolation of the CO2 response curves to zero CO2. The CO2 compensation concentration in tall fescue was nearly insensitive to photosynthetically active radiation above 140 microEinsteins per square meter per second but, in P. milioides and P. schenckii, it decreased from values of 69 and 62 microliters per liter, respectively, to values of 21 and 16 as the radiation level was increased from 50 to 1075 microEinsteins per square meter per second. Interpolation of CO2-response curves showed that an increase in photosynthetically active radiation level from 100 to 2,000 microEinsteins per square meter per second reduced the CO2 compensation value of P. schenckii from 38 to 19 microliters per liter. Data from these experiments indicate reduced photorespiration or a CO2-recycling mechanism in P. milioides and P. schenckii which causes apparent photorespiration to be nearly insensitive to temperature in the 20 to 35 C range and to decrease at high radiation intensities.  相似文献   

3.
4.
Erratum     
Glycolate synthesis was inhibited 40–50% in illuminated tobacco leaf disks, which have rapid rates of photorespiration, when floated on 20 mm potassium glycidate (2,3-epoxypropionate), an epoxide similar in structure to glycolate. The inhibitor also decreased the release of photorespiratory CO2 about 40%, and the specificity of glycidate was demonstrated by the 40–50% increase in rate of photosynthetic CO2 uptake observed in its presence. The importance of glycolate synthesis and metabolism in the production of photorespiratory CO2 and the role of glycolate in diminishing net photosynthesis in species with rapid rates of photorespiration was thus further confirmed. L-(or 2S)-Glycidate was slightly more active than DL-glycidate, but glycidate was more effective as a specific inhibitor in leaf tissue than several other epoxide analogs of glycolate examined. The products of photosynthetic 14O2 fixation after 3 or 4 min of uptake were proportionately altered in the presence of glycidate, and the specific radioactivity of the [14C]glycolate produced was closer to that of the 14CO2 supplied. Glycidate inhibited glycolate synthesis in tobacco leaf disks irreversibly, since the degree of inhibition was the same for at least 2 hr after the inhibitor solution was removed. Glycidate also blocked glycolate synthesis in maize leaf disks, tissue with low rates of photorespiration, but large increases in net photosynthesis were not observed in maize with glycidate, because glycolate synthesis is normally only about 10% as rapid in maize as in tobacco. The demonstration of increases in net photosynthesis of 40–50% when glycolate synthesis (and photorespiration) is blocked with glycidate indicates in an independent manner that the biochemical or genetic control of photorespiration should permit large increases in plant productivity in plant species possessing rapid rates of photorespiration.  相似文献   

5.
Photorespiration rates in tissue cultures of a C4 plant, Portulaca oleracea, were compared to those in tissue cultures of a C3 plant, Streptanthus tortuosus. The C4 plant tissue cultures have one-half to one-third the photorespiration rate of the C3 plant tissue cultures and respond to varying O2 concentrations in a manner typical of C4 plants. The results suggest that the lack of detectable photorespiration in C4 plants is not related to leaf anatomy.  相似文献   

6.
Oliver DJ 《Plant physiology》1978,62(5):690-692
Net photosynthetic 14CO2 fixation by isolated maize (Zea mays) bundle sheath strands was stimulated 20 to 35% by the inclusion of l-glutamate or l-aspartate in the reaction mixture. Maximal stimulation occurred at a 7.5 mm concentration of either amino acid. Since the photosynthetic rate and the glutamate-dependent stimulation in the rate were equally sensitive to a photosynthetic electron transport inhibitor, 3-(p-chlorophenyl)-1,1-dimethylurea, it was concluded that glutamate did not stimulate CO2 fixation by supplying needed NADPH (NADH) through glutamate dehydrogenase. Treatment of the bundle sheath strands with glutamate inhibited glycolate synthesis by 59%. Photorespiration in this tissue, measured as the O2 inhibition of CO2 fixation (the Warburg effect), was inhibited by treatment with glutamate. The stimulation in net photosynthetic CO2 fixation probably results from the decrease in photorespiratory CO2 loss. This metabolic regulation of the rate of glycolate synthesis and photorespiration observed with isolated bundle sheath strands could account for the inability to detect rapid photorespiration in the mature intact maize leaf.  相似文献   

7.
Mass spectrometric techniques were used to trace the incorporation of [18O]oxygen into metabolites of the photorespiratory pathway. Glycolate, glycine, and serine extracted from leaves of the C3 plants, Spinacia oleracea L., Atriplex hastata, and Helianthus annuus which had been exposed to [18O]oxygen at the CO2 compensation point were heavily labeled with 18O. In each case one, and only one of the carboxyl oxygens was labeled. The abundance of 18O in this oxygen of glycolate reached 50 to 70% of that of the oxygen provided after only 5 to 10 seconds exposure to [18O]oxygen. Glycine and serine attained the same final enrichment after 40 and 180 seconds, respectively. This confirms that glycine and serine are synthesized from glycolate.

The labeling of photorespiratory intermediates in intact leaves reached a mean of 59% of that of the oxygen provided in the feedings. This indicates that at least 59% of the glycolate photorespired is synthesized with the fixation of molecular oxygen. This estimate is certainly conservative owing to the dilution of labeled oxygen at the site of glycolate synthesis by photosynthetic oxygen. We examined the yield of 18O in glycolate synthesized in vitro by isolated intact spinach chloroplasts in a system which permitted direct sampling of the isotopic composition of the oxygen at the site of synthesis. The isotopic enrichment of glycolate from such experiments was 90 to 95% of that of the oxygen present during the incubation.

The carboxyl oxygens of 3-phosphoglycerate also became labeled with 18O in 20- and 40-minute feedings with [18O]oxygen to intact leaves at the CO2 compensation point. Control experiments indicated that this label was probably due to direct synthesis of 3-phosphoglycerate from glycolate during photorespiration. The mean enrichment of 3-phosphoglycerate was 14 ± 4% of that of glycine or serine, its precursors of the photorespiratory pathway, in 10 separate feeding experiments. It is argued that this constant dilution of label indicates a constant stoichiometric balance between photorespiratory and photosynthetic sources of 3-phosphoglycerate at the CO2 compensation point.

Oxygen uptake sufficient to account for about half of the rate of 18O fixation into glycine in the intact leaves was observed with intact spinach chloroplasts. Oxygen uptake and production by intact leaves at the CO2 compensation point indicate about 1.9 oxygen exchanged per glycolate photorespired. The fixation of molecular oxygen into glycolate plus the peroxisomal oxidation of glycolate to glyoxylate and the mitochondrial conversion of glycine to serine can account for up to 1.75 oxygen taken up per glycolate.

These studies provide new evidence which supports the current formulation of the pathway of photorespiration and its relation to photosynthetic metabolism. The experiments described also suggest new approaches using stable isotope techniques to study the rate of photorespiration and the balance between photorespiration and photosynthesis in vivo.

  相似文献   

8.
光呼吸是指植物绿色组织依赖光能吸收O2并释放CO2的过程,它被认为是一个浪费能量的过程。正常生长的C3植物光呼吸可损耗光合产物的25%~30%,在干旱、高温、高光等逆境胁迫下,该损耗可高达50%,因此,显著提高C3植物的生产力可通过减少光呼吸通量来实现。尽管光呼吸对植物生产力的负面影响明显,但它对植物一些必要生理活动可能起着重要作用,其中包括参与光保护、H2O2信号发生、氮代谢、光氧化和抗逆反应等。该文对光呼吸的改造优化需要把握好平衡点与适配度。基于Rubisco改造、CO2浓缩机制(CCM)和光呼吸支路创建的光呼吸改造研究进展进行了综述。通过了解调控光呼吸提高植物光能转化效率方面的最新进展, 可望为光呼吸代谢的分子调控及改良研究提供指导。  相似文献   

9.
As a boy, I read Sinclair Lewis's Arrowsmithand dreamed of doing research of potential benefit to society. I describe the paths of my scientific career that followed. Several distinguished scientists served as my mentors and I present their profiles. Much of my career was in a small department at a small institution where independent researchers collaborated informally. I describe the unique method of carrying on research there. My curiosity about glycolate metabolism led to unraveling the enzymatic mechanism of the glycolate oxidase reaction and showing the importance of H2O2 as a byproduct. I discovered enzymes catalyzing the reduction of glyoxylate and hydroxypyruvate. I found α-hydroxysulfonates were useful competitive inhibitors of glycolate oxidase. In a moment of revelation, I realized that glycolate metabolism was an essential part of photorespiration, a process that lowers net photosynthesis in C3 plants. I added inhibitors of glycolate oxidase to leaves and showed: (1) glycolate was synthesized only in light as an early product of photosynthetic CO2 assimilation, (2) the rate of glycolate oxidation consumed a sizable fraction of net photosynthesis in C3 but not in C4 plants, and (3) that glycolate metabolism increased greatly at higher temperatures. For a while I studied the control of stomatal opening in leaves, and this led to the finding that potassium ions are a key solute in guard cells. I describe experiments that show that when photorespiration rates are high, as occurs at higher temperatures, genetically increasing leaf catalase activity reduces photorespiration and increases net photosythetic CO2 assimilation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
C. K. M. Rathnam 《Planta》1979,145(1):13-23
The potential for glycolate and glycine metabolism and the mechanism of refixation of photorespiratory CO2 in leaves of C4 plants were studied by parallel inhibitor experiments with thin leaf slices, different leaf cell types and isolated mitochondria of C3 and C4 Panicum species. CO2 evolution by leaf slices of P. bisulcatum, a C3 species, fed glycolate or glycine was light-independent and O2-sensitive. The C4 P. maximum and P. miliaceum leaf slices fed glycolate or glycine evolved CO2 in the dark but not in the light. In C4 species, dark CO2 evolution was abolished by the addition of phosphoenolpyruvate (PEP)4. The addition of maleate, a PEP carboxylase inhibitor, resulted in photorespiratory CO2 efflux by C4 leaf slices in the light also. However, PEP and maleate had no effect on either glycolate-dependent O2 uptake by the C4 leaf slices or on glycolate and glycine metabolism in C3 leaf slices. The rate of photorespiratory CO2 evolution in the C3 Panicum species was 3 times higher than that observed with the C4 species. The ratio of glycolate-dependent CO2 evolution to O2 uptake in both groups was 1:2. Isolated C4 mesophyll protoplasts or their mitochondria did not metabolize glycolate or glycine. However, both C3 mesophyll protoplasts and C4 bundle sheath strands readily metabolized glycolate and glycine in a light-independent, O2-sensitive manner, and the addition of PEP or maleate had no effect. C4 bundle sheath- and C3-mitochondria were capable of oxidizing glycine. This oxidation was linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport inhibitors. C4 bundle sheath- and C3-mitochondrial glycine decarboxylation was stimulated by oxaloacetate and NAD had no effect. In marked contrast, mitochondria isolated from C4 mesophyll cells were incapable of oxidizing or decarboxylating added glycine. The results suggest that in leaves of C4 plants bundle sheath cells are the primary site of O2-sensitive photorespiratory CO2 evolution and the PEP carboxylase present in the mesophyll cells has the Potential for efficiently refixing CO2 before it escapes out of the leaf. The relative role of the PEP carboxylase mediated CO2 pump and reassimilation of photorespiratory CO2 are discussed in relation to the apparent lack of photorespiration in leaves of C4 species.Abbreviations BSA bovine serum albumin - Chl chlorophyll - PEP phosphoenolpyruvate - Rbu-P 2 ribulose 1,5-bisphosphate - Rib-5-P ribose-5-phosphate - Ru-5-P ribuluse-5-phosphate - FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone Journal Series Paper, New Jersey Agricultural Experiment Station  相似文献   

11.
Recalculations of soybean photorespiration indicate that mean rates are closer to 16.1 than 5.6 milligrams of CO2 per square decimeter per hour as previously reported. Photorespiration of soybean thus amounts to at least a 30% carbon turnover of light-saturated photosynthesis. Photorespiration showed no significant relationship to net photosynthesis. Negative correlations were found between CO2 efflux and stomatal resistance as well as between corrected photorespiration and residual intracellular resistance of the leaf to CO2 uptake.  相似文献   

12.
Chollet R 《Plant physiology》1976,57(2):237-240
Glycidate (2,3-epoxypropionate) increased CO2 photoassimilation in intact spinach (Spinacia oleracea L.) chloroplasts in the presence of various inhibitors of photosynthesis, including O2, arsenite, azide, iodo-acetamide, and carbonylcyanide 3-chlorophenylhydrazone. Although the mechanism by which glycidate enhances photosynthesis is obscure, the stimulatory effect cannot be ascribed to either an inhibition of glycolate formation, a specific interaction with the O2 inhibition of photosynthesis, or a direct effect on the ribulose 1,5-bisphosphate carboxylase (EC 4.1.1.39) reaction. The lack of a differential effect of glycidate on photosynthesis and glycolate formation in the isolated chloroplast was confirmed in whole leaf studies by the CO2 compensation concentration assay. These results are at variance with the report that glycidate stimulates net photosynthesis in tobacco leaf disks by irreversibly inhibiting glycolate formation and thus photorespiration (Zelitch, I., 1974, Arch. Biochem. Biophys. 163: 367-377).  相似文献   

13.
A method was devised to quantify short-term photorespiratory rates in terrestrial plants using 18O-intermediates of the glycolate pathway, specifically glycolate, glycine, and serine. The pathway intermediates were isolated and analyzed on a GC/MS to determine molecular percent 18O-enrichment. Rates of glycolate synthesis were determined from 18O-labeling kinetics of the intermediates, derived rate equations, and nonlinear regression techniques. Glycolate synthesis in wheat (Triticum aestivum L.), a C3 plant, and maize (Zea mays L.), a C4 plant, was stimulated by high O2 concentrations and inhibited by high CO2 concentrations. The synthesis rates were 7.3, 2.1, and 0.7 micromoles per square decimeter per minute under a 21% O2 and 0.035% CO2 atmosphere for leaf tissue of wheat, maize seedlings, and 3-month-old maize, respectively. Photorespiratory CO2 evolution rates were estimated to be 27, 6, and 2%, respectively, of net photosynthesis for the three groups of plants under the above atmosphere. The results from maize tissue support the hypothesis that C4 plants photorespire, albeit at a reduced rate in comparison to C3 plants, and that the CO2/O2 ratio in the bundle sheath of maize is higher in mature tissue than in seedling tissue. The pool size of the three photorespiratory intermediates remained constant and were unaffected by changes in either CO2 or O2 concentrations throughout the 10-minute labeling period. This suggests that photorespiratory metabolism is regulated by other mechanism besides phosphoglycolate synthesis by ribulose-1,5-bisphosphate carboxylase/oxygenase, at least under short-term conditions. Other mechanisms could be alternate modes of synthesis of the intermediates, regulation of some of the enzymes of the photorespiratory pathway, or regulation of carbon flow between organelles involved in photorespiration. The glycolate pool became nearly 100% 18O-labeled under an atmosphere of 40% O2. This pool failed to become 100% 18O-enriched under lower O2 concentrations.  相似文献   

14.
Chang CC  Huang AH 《Plant physiology》1981,67(5):1003-1006
The flow of glyoxylate derived from glycolate into various metabolic routes in the peroxisomes during photorespiration was assessed. Isolated spinach leaf peroxisomes were fed [14C] glycolate in the absence or presence of exogenous glutamate, and the formation of radioactive glyoxylate, CO2, glycine, oxalate, and formate was monitored at time intervals. In the absence of glutamate, 80% of the glycolate was consumed within 2 hours and concomitantly glyoxylate accumulated; CO2, oxalate, and formate each accounted for less than 5% of the consumed glycolate. In the presence of equal concentration of glutamate, glycolate was metabolized at a similar rate, and glycine together with some glyoxylate accumulated; CO2, oxalate, and formate each accounted for an even lesser percentage of the consumed glycolate. CO2 and oxalate were not produced in significant amounts even in the absence of glutamate, unless glycolate had been consumed completely and glyoxylate had accumulated for a prolonged period. These in vitro findings are discussed in relation to the extent of CO2 and oxalate generated in leaf peroxisomes during photorespiration.  相似文献   

15.
When leaf discs of Xanthium strumarium L. and Salvia splendens L. are incubated in sealed flasks in the light, more C2H4 gas is released in the presence of added CO2 (30-200 millimolar NaHCO3) than without CO2. In Salvia, the maximum rate of C2H4 release occurs when sufficient CO2 (above 125 millimolar NaHCO3) is added to saturate photosynthesis confirming previous studies. The maximum rate of C2H4 release from illuminated discs is similar to the rate in the dark with or without CO2 in both species. Glycolate enhances a CO2-dependent C2H4 evolution from illuminated leaf discs. However, the maximum rate of C2H4 release with glycolate is the same as that observed with saturating CO2. When photosynthesis is inhibited by darkness or by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, glycolate has no effect.

Studies with [2,3-14C]-1-aminocyclopropane-1-carboxylic acid (ACC) show that the pattern of C2H4 release and the specific activity of the 14C2H4 in the presence and absence of glycolate is similar to that described above, indicating that glycolate does not alter uptake of the exogenously supplied precursor (ACC) or stimulate C2H4 release from an endogenous source at appreciable rates. Glycolate oxidase in vitro generates H2O2 which stimulates a slow breakdown of ACC to C2H4, but since exogenous glycolate is oxidized to CO2 in both the light and the dark it is argued that the glycolate-dependent increase in C2H4 release from illuminated leaf discs is not mediated directly by the action of enzymes of glycolate catabolism. The effects of glycolate and CO2 are not easily explained by changes in stomatal resistance. The data support the view that glycolate decarboxylation at subsaturating levels of CO2 in the light stimulates C2H4 release by raising the CO2 level in the tissue.

  相似文献   

16.
A transient CO2 burst is exhibited by irradiated leaves of the C3 plant geranium (Pelargonium X hortorum, Bailey) after the irradiance is quickly lowered. The light CO2 burst appears to be related to photorespiration because of its irradiance dependency and its sensitivity to other environmental components such as CO2 and O2 concentration. The term post-lower-irradiance CO2 burst or PLIB is used to describe the phenomenon. The PLIB appears to be a quantitative measurement of photorespiration with intact geranium leaves. The PLIB has been observed with intact leaves of other C3 plants but not with C4 leaves. Therefore, it is proposed that, after maximizing intact leaf photosynthetic rates and leaf chamber gas measuring conditions, photorespiration can be measured with intact C3 leaves such as geranium as a transient post-lower-irradiance CO2 burst.  相似文献   

17.
Zelitch I 《Plant physiology》1968,43(11):1829-1837
A leaf disk assay for photorespiration has been developed based on the rate of release of recently fixed 14CO2 in light in a rapid stream of CO2-free air at 30° to 35°. In tobacco leaves (Havana Seed) photorespiration with this assay is 3 to 5 times greater than the 14CO2 output in the dark. In maize, photorespiration is only 2% of that in tobacco.

The importance of open leaf stomata, rapid flow rates of CO2-free air, elevated temperatures, and oxygen in the atmosphere in order to obtain release into the air of a larger portion of the 14CO2 evolved within the tissue in the light was established in tobacco. Photorespiration, but not dark respiration, was inhibited by α-hydroxy-2-pyridinemethanesulfonic acid, an inhibitor of glycolate oxidase, and by 3-(4-chlorophenyl)-1,1-dimethylurea (CMU), an inhibitor of photosynthetic electron transport, under conditions which did not affect the stomata. These experiments show that the substrates of photorespiration and dark respiration differ and also provide additional support for the role of glycolate as a major substrate of photorespiration. It was also shown that at 35° the quantity of 14CO2 released in the assay may represent only 33% of the gross 14CO2 evolved in the light, the remainder being recycled within the tissue.

It was concluded that maize does not evolve appreciable quantities of CO2 in the light and that this largely accounts for the greater efficiency of net photosynthesis exhibited by maize. Hence low rates of photorespiration may be expected to be correlated with a high rate of CO2 uptake at the normal concentrations of CO2 found in air and at higher light intensities.

  相似文献   

18.
The submersed angiosperms Myriophyllum spicatum L. and Hydrilla verticillata (L.f.) Royal exhibited different photosynthetic pulse-chase labeling patterns. In Hydrilla, over 50% of the 14C was initially in malate and aspartate, but the fate of the malate depended upon the photorespiratory state of the plant. In low photorespiration Hydrilla, malate label decreased rapidly during an unlabeled chase, whereas labeling of sucrose and starch increased. In contrast, for high photorespiration Hydrilla, malate labeling continued to increase during a 2-hour chase. Thus, malate formation occurs in both photorespiratory states, but reduced photorespiration results when this malate is utilized in the light. Unlike Hydrilla, in low photorespiration Myriophyllum, 14C incorporation was via the Calvin cycle, and less than 10% was in C4 acids.

Ethoxyzolamide, a carbonic anhydrase inhibitor and a repressor of the low photorespiratory state, increased the label in glycolate, glycine, and serine of Myriophyllum. Isonicotinic acid hydrazide increased glycine labeling of low photorespiration Myriophyllum from 14 to 25%, and from 12 to 48% with high photorespiration plants. Similar trends were observed with Hydrilla. Increasing O2 increased the per cent [14C]glycine and the O2 inhibition of photosynthesis in Myriophyllum. In low photorespiration Myriophyllum, glycine labeling and O2 inhibition of photosynthesis were independent of the CO2 level, but in high photorespiration plants the O2 inhibition was competitively decreased by CO2. Thus, in low but not high photorespiration plants, glycine labeling and O2 inhibition appeared to be uncoupled from the external [O2]/[CO2] ratio.

These data indicate that the low photorespiratory states of Hydrilla and Myriophyllum are mediated by different mechanisms, the former being C4-like, while the latter resembles that of low CO2-grown algae. Both may require carbonic anhydrase to enhance the use of inorganic carbon for reducing photorespiration.

  相似文献   

19.
In Chlorella pyrenoidosa which have been photosynthesizing in either 1.5% 14CO2 or 0.05% 14CO2 in air, gassing with 100% O2 results in rapid formation of phosphoglycolate which is apparently converted to glycolate. However, only about one-third to one-half of the rate of glycolate formation can be accounted for by this route. The remaining glycolate formation may be the result of the oxidation of sugar monophosphates. The rates of formation of both glycolate and phosphoglycolate are about four times greater with algae that have been photosynthesizing in 1.5% 14CO2 than with algae which have been photosynthesizing with air, when the algae are then gassed with 100% O2.  相似文献   

20.
Photorespiration in Air and High CO(2)-Grown Chlorella pyrenoidosa   总被引:2,自引:2,他引:0       下载免费PDF全文
Shelp BJ  Canvin DT 《Plant physiology》1981,68(6):1500-1503
Oxygen inhibition of photosynthesis and CO2 evolution during photorespiration were compared in high CO2-grown and air-grown Chlorella pyrenoidosa, using the artificial leaf technique at pH 5.0. High CO2 cells, in contrast to air-grown cells, exhibited a marked inhibition of photosynthesis by O2, which appeared to be competitive and similar in magnitude to that in higher C3 plants. With increasing time after transfer to air, the photosynthetic rate in high CO2 cells increased while the O2 effect declined. Photorespiration, measured as the difference between 14CO2 and 12CO2 uptake, was much greater and sensitive to O2 in high CO2 cells. Some CO2 evolution was also present in air-grown algae; however, it did not appear to be sensitive to O2. True photosynthesis was not affected by O2 in either case. The data indicate that the difference between high CO2 and air-grown algae could be attributed to the magnitude of CO2 evolution. This conclusion is discussed with reference to the oxygenase reaction and the control of photorespiration in algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号