首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamic cerebral autoregulation (CA) describes the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (ABP). We tested the hypothesis that the efficiency of dynamic CA is increased by brain activation paradigms designed to induce hemispheric lateralization. CBF velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco(2) were continuously recorded in 14 right-handed healthy subjects (21-43 yr of age), in the seated position, at rest and during 10 repeated presentations (30 s on-off) of a word generation test and a constructional puzzle. Nonstationarities were not found during rest or activation. Transfer function analysis of the ABP-CBFV (i.e., input-output) relation was performed for the 10 separate 51.2-s segments of data during activation and compared with baseline data. During activation, the coherence function below 0.05 Hz was significantly increased for the right MCA recordings for the puzzle tasks compared with baseline values (0.36 +/- 0.16 vs. 0.26 +/- 0.13, P < 0.05) and for the left MCA recordings for the word paradigm (0.48 +/- 0.23 vs. 0.29 +/- 0.16, P < 0.05). In the same frequency range, significant increases in gain were observed during the puzzle paradigm for the right (0.69 +/- 0.37 vs. 0.46 +/- 0.32 cm.s(-1).mmHg(-1), P < 0.05) and left (0.61 +/- 0.29 vs. 0.45 +/- 0.24 cm.s(-1).mmHg(-1), P < 0.05) hemispheres and during the word tasks for the left hemisphere (0.66 +/- 0.31 vs. 0.39 +/- 0.15 cm.s(-1).mmHg(-1), P < 0.01). Significant reductions in phase were observed during activation with the puzzle task for the right (-0.04 +/- 1.01 vs. 0.80 +/- 0.86 rad, P < 0.01) and left (0.11 +/- 0.81 vs. 0.57 +/- 0.51 rad, P < 0.05) hemispheres and with the word paradigm for the right hemisphere (0.05 +/- 0.87 vs. 0.64 +/- 0.59 rad, P < 0.05). Brain activation also led to changes in the temporal pattern of the CBFV step response. We conclude that transfer function analysis suggests important changes in dynamic CA during mental activation tasks.  相似文献   

2.
The pathogenesis of many congenital cardiovascular diseases involves abnormal flow within the embryonic vasculature that results either from malformations of the heart or defects in the vasculature itself. Extensive genetic and genomic analysis in mice has led to the identification of an array of mutations that result in cardiovascular defects during embryogenesis. Many of these mutations cause secondary effects within the vasculature that are thought to arise because of altered fluid dynamics. Presumably, cardiac defects disturb or reduce flow and thereby lead to the disruption of the mechanical signals necessary for proper vascular development. Unfortunately, a precise understanding of how flow disruptions lead to secondary vasculature defects has been hampered by the inadequacy of existing analytical tools. Here, we used a fast line-scanning technique for the quantitative analysis of hemodynamics during early organogenesis in mouse embryos, and we present a model system for studying cellular responses during the formation and remodeling of the mammalian cardiovascular system. Flow velocity profiles can be measured as soon as a heart begins to beat even in newly formed vessels. These studies establish a link between the pattern of blood flow within the vasculature and the stage of heart development and also enable analysis of the influence of mechanical forces during development.  相似文献   

3.
Visuomotor rotation tasks have proven to be a powerful tool to study adaptation of the motor system. While adaptation in such tasks is seemingly automatic and incremental, participants may gain knowledge of the perturbation and invoke a compensatory strategy. When provided with an explicit strategy to counteract a rotation, participants are initially very accurate, even without on-line feedback. Surprisingly, with further testing, the angle of their reaching movements drifts in the direction of the strategy, producing an increase in endpoint errors. This drift is attributed to the gradual adaptation of an internal model that operates independently from the strategy, even at the cost of task accuracy. Here we identify constraints that influence this process, allowing us to explore models of the interaction between strategic and implicit changes during visuomotor adaptation. When the adaptation phase was extended, participants eventually modified their strategy to offset the rise in endpoint errors. Moreover, when we removed visual markers that provided external landmarks to support a strategy, the degree of drift was sharply attenuated. These effects are accounted for by a setpoint state-space model in which a strategy is flexibly adjusted to offset performance errors arising from the implicit adaptation of an internal model. More generally, these results suggest that strategic processes may operate in many studies of visuomotor adaptation, with participants arriving at a synergy between a strategic plan and the effects of sensorimotor adaptation.  相似文献   

4.
Sublingual and intestinal mucosal blood flow and Pco(2) were studied in a canine model of endotoxin-induced circulatory shock and resuscitation. Sublingual Pco(2) (Ps(CO(2))) was measured by using a novel fluorescent optrode-based technique and compared with lingual measurements obtained by using a Stowe-Severinghaus electrode [lingual Pco(2) (Pl(CO(2)))]. Endotoxin caused parallel changes in cardiac output, and in portal, intestinal mucosal, and sublingual blood flow (Q(s)). Different blood flow patterns were observed during resuscitation: intestinal mucosal blood flow returned to near baseline levels postfluid resuscitation and decreased by 21% after vasopressor resuscitation, whereas Q(s) rose to twice that of the preshock level and was maintained throughout the resuscitation period. Electrochemical and fluorescent Pco(2) measurements showed similar changes throughout the experiments. The shock-induced increases in Ps(CO(2)) and Pl(CO(2)) were nearly reversed after fluid resuscitation, despite persistent systemic arterial hypotension. Vasopressor administration induced a rebound of Ps(CO(2)) and Pl(CO(2)) to shock levels, despite higher cardiac output and Q(s), possibly due to blood flow redistribution and shunting. Changes in Pl(CO(2)) and Ps(CO(2)) paralleled gastric and intestinal Pco(2) changes during shock but not during resuscitation. We found that the lingual, splanchnic, and systemic circulations follow a similar pattern of blood flow variations in response to endotoxin shock, although discrepancies were observed during resuscitation. Restoration of systemic, splanchnic, and lingual perfusion can be accompanied by persistent tissue hypercarbia, mainly lingual and intestinal, more so when a vasopressor agent is used to normalize systemic hemodynamic variables.  相似文献   

5.
6.
Adolescence is a critical period for maturation of neurobiological processes that underlie higher cognitive functions and social and emotional behavior. Recent studies have applied new advances in magnetic resonance imaging to increase understanding of the neurobiological changes that occur during the transition from childhood to early adulthood. Structural imaging data indicate progressive and regressive changes in the relative volumes of specific brain regions, although total brain volume is not significantly altered. The prefrontal cortex matures later than other regions and its development is paralleled by increased abilities in abstract reasoning, attentional shifting, response inhibition and processing speed. Changes in emotional capacity, including improvements in affective modulation and discrimination of emotional cues, are also seen during adolescence. Functional imaging studies using cognitive and affective challenges have shown that frontal cortical networks undergo developmental changes in processing. In summary, brain regions that underlie attention, reward evaluation, affective discrimination, response inhibition and goal-directed behavior undergo structural and functional re-organization throughout late childhood and early adulthood. Evidence from recent imaging studies supports a model by which the frontal cortex adopts an increasingly regulatory role. These neurobiological changes are believed to contribute, in part, to the range in cognitive and affective behavior seen during adolescence.  相似文献   

7.
Cerebral hemodynamics during sensorimotor activation in humans   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
10.
With the use of functional MRI (fMRI), we studied the changes in brain hemodynamic activity of healthy subjects during motor imagery training with the use brain-computer interface (BCI), which is based on the recognition of EEG patterns of imagined movements. ANOVA dispersion analysis showed there are 14 areas of the brain where statistically significant changes were registered. Detailed analysis of the activity in these areas before and after training (Student’s and Mann-Whitney tests) showed that the real amount of such areas is five; these are Brodmann areas 44 and 45, insula, middle frontal gyrus and anterior cingulate gyrus. We suggest that these changed are caused by the formation of memory traces of those brain activity patterns which are most accurately recognized by BCI classifiers as correspondent with limb movements imagery. We also observed a tendency of increase in the activity of motor imagery after training. The hemodynamic activity in all these 14 areas during real movements was either approximately the same or significantly higher than during motor imagery; activity during imagined leg movements was higher than that during imagines arm movements, except for the areas of representation of arms.  相似文献   

11.
The sources of brain activity that make the maximum contribution to EEG patterns corresponding to motor imagery have been studied. The accuracy of their classification determines the efficiency of brain-computer interface (BCI) for controlling external technical devices directly by brain signals, without the involvement of muscle activity. Brain activity sources are identified by independent component analysis. The independent components providing the maximum BCI classification accuracy are considered relevant for the motor imagery task. The two most relevant sources exhibit clearly marked event-related desynchronization and synchronization of the μ-rhythm during the imagery of contra- and ipsilateral hand movements. These sources were localized by solving the inverse EEG problem with due consideration for individual geometry of the brain and its covers, as determined by magnetic resonance imaging. Each of the sources was shown to be localized in the 3a area of the primary somatosensory cortex corresponding to proprioceptive sensitivity of the contralateral hand. Their positions were close to the foci of BOLD activity obtained by fMRI.  相似文献   

12.
13.
Portal-systemic blood shunting is often accompanied by hyperglucagonemia and hemodynamic changes. To determine this causal relation, splanchnic and systemic hemodynamics (radioactive microspheres) and plasma glucagon levels (radioimmunoassay) were assessed in conditions of total portal-systemic shunting in portacaval-shunted (PCS) rats and in sham-operated (SO) normal rats. To compare these results, another hemodynamic study was undertaken basally and during glucagon infusion in nonoperated normal rats. PCS rats showed a threefold greater plasma glucagon concentration than SO animals (924 +/- 134 vs. 309 +/- 18 pg/ml, p less than 0.01), and they developed a hyperdynamic splanchnic circulation with higher portal venous inflow than SO rats (8.29 +/- 1.1 vs. 5.09 +/- 0.4 ml/min/100 g, p less than 0.05). Infusion of a pharmacological dose of glucagon in normal rats increased portal venous inflow (from 4.92 +/- 0.33 to 6.24 +/- 0.48 ml/min/100 g, p less than 0.05) so as to imply this hormone in the development of the hyperdynamic splanchnic circulation in conditions of portal-systemic shunting. However, the discrepancies in systemic hemodynamics between PCS and glucagon-infused rats may be a result of the different plasma glucagon levels reached in the two groups.  相似文献   

14.
Studies were carried out to determine the relative importance of volume and hemodilution on hemodynamic adjustments to acute volume expansion. Systemic and renal hemodynamics were monitored in unanesthetized and unrestrained rats during progressive and equivalent blood volume expansion with saline (Sal; 1, 2, and 4% body wt), 7% BSA solution (0.35, 0.7, and 1.4% body wt), and reconstituted whole blood from donor rats (WBL; 0.35, 0.7, and 1.4% body wt). Mean arterial pressure remained unchanged in Sal and BSA but increased progressively in WBL-expanded rats (from 92 to 106 mmHg after maximal expansion). In Sal and BSA-expanded rats, cardiac output (CO) and renal blood flow (RBF) increased (CO: Sal from 19 to 20, 22, and 25; BSA from 21 to 23, 27, and 31; RBF: Sal from 1.6 to 1.8, 2.2, and 2.5; BSA from 2 to 2.4, 2.7, and 3.1 ml. min(-1). 100 g body wt(-1)), whereas total peripheral (TPR) and renal vascular (RVR) resistance decreased in parallel with the expansions. After expansion with WBL, CO increased progressively but less extensively than in cell-free expanded rats (21 to 22, 24, and 26 ml. min(-1). 100 g body wt(-1)), whereas TPR and RVR remained unchanged. Systemic hematocrit (Hct) decreased approximately the same after expansion with Sal or BSA solutions but remained unchanged after expansion with WBL. Isovolemic hemodilution to Hct levels comparable to those seen after maximal expansion with cell-free solutions also reduced SVR and RVR, although less extensively. These findings suggest that in unanesthetized rats hemodilution plays a major role in the systemic and renal hemodynamics during expansion.  相似文献   

15.
Certain regions of the human brain are activated both during action execution and action observation. This so-called ‘mirror neuron system’ has been proposed to enable an observer to understand an action through a process of internal motor simulation. Although there has been much speculation about the existence of such a system from early in life, to date there is little direct evidence that young infants recruit brain areas involved in action production during action observation. To address this question, we identified the individual frequency range in which sensorimotor alpha-band activity was attenuated in nine-month-old infants'' electroencephalographs (EEGs) during elicited reaching for objects, and measured whether activity in this frequency range was also modulated by observing others'' actions. We found that observing a grasping action resulted in motor activation in the infant brain, but that this activity began prior to observation of the action, once it could be anticipated. These results demonstrate not only that infants, like adults, display overlapping neural activity during execution and observation of actions, but that this activation, rather than being directly induced by the visual input, is driven by infants'' understanding of a forthcoming action. These results provide support for theories implicating the motor system in action prediction.  相似文献   

16.
17.
This study investigates the release of Neuropeptide Y from eight human pheochromocytomas. Profil immunoreactive Neuropeptide Y (Ir-NPY) levels during the management of surgery were compared with these of norepinephrine (NE) while hemodynamics were monitored. Plasma IrNPY and NE levels increased during tumor manipulation and returned to near normal one hour after operation. However, Ir-NPY levels remained high just after tumor resection while NE levels were significantly decreased. At tumor manipulation and just after tumor resection, plasma Ir-NPY levels were correlated with the systemic vascular resistances (SVR) (r = 0.74; P<0.04 and r = 0.86; P<0.006 respectively). No correlation was found either between plasma Ir-NPY and NE levels or between plasma NE levels and SVR. The release of Ir-NPY from tumor tissue, studied by a superfusion method, exhibited a significant correlation with the plasma Ir-NPY concentrations at the time of corresponding tumor resection (r = 0.95; P<0.007). Chromatographic analysis showed that Ir-NPY in plasma and outflow migrate as human NPY (1-36). These results confirmed that in pheochromocytoma, plasma NPY mainly originates from the tumor and argue for an important role of NPY in pheochromocytoma hypertension as indicated by the correlation between the Ir-NPY levels and the SVR.  相似文献   

18.
19.
20.
We investigated cognitive-motor abilities in 303 (156 female) school children from Zagreb, Croatia, in the age span 10 to 14 years using a newly developed chronometrical reactionmeter system (CRD). The following tests were applied: CRD-311 (simple visual discrimination of signal location), CRD-324 (short-term memory actualisation), CRD-21 (simple convergent visual orientation), and CRD-11 (arithmetically conceptualised/operationalised convergent thinking). In both gender a statistically significant age related improvement of the performance for time related parameters (minimum time of test item solving (MT), total ballast (TB), and total time of test solving (TT) was observed. In contrast, the number of errors (NE), which was the only non-time related parameter tested, did not significantly change with age. Significant differences between boys and girls were observed for the time related parameters TB and MT. TB was significantly lower in girls, whereas boys tended to be faster in MT measurements. In TT as a composed measure of the mentioned parameters, no major differences were observed. We conclude that the CRD system is a new useful tool for investigating the complexity of cognitive-motor abilities in children. Our cross-sectional study demonstrated that the time-related parameters were significantly affected by age and gender during puberty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号