首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Suspension cultures ofNicotiana tabacum have been successfully grown in aqueous, two-phase systems comprised of polyethylene glycol (PEG) and dextran in a modified LS medium. Aqueous two-phase systems may be advantageous for plant tissue cultivation since cells can be immobilized in one phase while secondary products are collected and withdrawn in the other phase, thus enhancing productivity. Culture growth rate was compared in a variety of two-phase systems, covering a range of both polymer molecular weight and concentration. Systems exhibiting relatively higher phase miscibility yielded increased growth rates as compared to less miscible phase formulations. The highest observed growth rate occurred in 3% PEG 20000/5% crude dextran and approached growth rates and cell densities of cultures grown in standard LS medium.  相似文献   

2.
目的:设计适用于Vero细胞微载体培养的化学成分明确无血清培养基。方法:以商品化的DMEM/F12合成培养基为基础培养基,应用Plackett—Burman实验设计和响应面分析法设计支持Vero细胞微载体培养的化学成分明确无血清培养基。结果:以细胞密度为评价指标,在单因素实验的基础上采用Plackett-Burman实验设计考察10种培养基添加成分对Vero细胞生长的影响,确定了3种对Vero细胞生长起明显促进作用的培养基添加成分,为胰岛素、血清素和腐胺。继而利用响应面法分析了这3种添加成分的最佳水平范围,设计了一种支持Vero细胞贴附培养的无血清培养基(VERO—SFM—A)。在Bellco搅拌式培养瓶中采用VERO-SFM.A和Cytodex1微载体培养Vero细胞,细胞密度由接种时的4×10^5cells/ml增加到培养6d后的22.3×10^cells/ml,细胞活力保持在96%以上。结论:VERO—SFM—A能够有效地支持Vero细胞在微载体表面固定化生长并达到较高的细胞密度,具有实际应用于Vero细胞微载体规模化培养的应用潜力。  相似文献   

3.
Precocious Germination during In Vitro Growth of Soybean Seeds   总被引:3,自引:3,他引:0       下载免费PDF全文
Immature Glycine max (L.) Merrill seeds were grown and matured in liquid medium at 25°C under fluorescent light. In standard medium containing minerals, 146 millimolar sucrose and 62.5 millimolar glutamine (osmolality 0.24), precocious germination seldom occurred with a starting seed size of less than 300 milligrams fresh weight. Frequency of precocious germination increased with increased starting seed size. Sucrose concentration strongly affected precocious germination while glutamine concentration had no effect. Starting with 300 to 350 milligrams fresh weight seeds, treatments which reduced the sucrose concentration or lowered the osmolality of the culture medium stimulated precocious germination, and increased the fresh weight growth but not the dry weight growth of seeds. Increasing the osmolality to 0.38 with sucrose or mannitol prevented precocious germination without reducing dry weight accumulation in seeds. In medium with initially low osmolality, precocious germination was inhibited by addition of 1 to 100 micromolar abscisic acid to the medium without a reduction in seed growth. During growth and maturation of large soybean seeds in vitro, precocious germination and other abnormal tissue growth can be prevented by high sucrose or mannitol concentrations in the medium or by addition of abscisic acid.  相似文献   

4.
Anerobic biofilms with dominantly acidogenic bacteria were grown in fixed-bed recycle reactors. The influence of calcium concentration in the culture medium on biofilm mass accumulation, immobilized calcium concentration, and biofilm-specific activity was investigated. The results indicate that the biofilm mass accumulation was increased by the presence of calcium in the growth medium when calcium concentration was not higher than 120mg/L. Calcium accumulated in the biofilms increased in proportion to the calcium level in the feed. The biofilms for an increased input calcium concentration showed a trend of decrease in specific activity. The biofilms with a thickeness of less than 0.5 mm had the highest specific activity. The optimum calcium concentration for substrate consumption by the biofilms was 100 to 120 mg/L. The biofilms transferred from higher calcium medium to lower calcium medium were more susceptible to sloughing from their support surfaces, which indicates calcium's role in the stability of the biofilm structure. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Accumulation of poly-beta-hydroxybutyrate (PHB) by photoautotrophic microorganisms makes it possible to reduce the production cost of PHB. The Synechocystis sp. PCC6803 cells grown in BG11 medium under balanced, nitrogen-starved or phosphorus-starved conditions were observed by transmission electron microscope. Many electron-transparent granules in the nitrogen-starved cells had a diameter up to 0.8 micron. In contrast, the number of granules in the normally cultured cells decreased obviously and only zero to three much smaller granules were in each cell. These granules were similar to those in bacteria capable of synthesizing PHB. They were proved to be PHB by gas chromatography after subjecting the cells to methanolysis. Effects of glucose as carbon source and light intensity on PHB accumulation in Synechocystis sp. PCC6803 under nitrogen-starved cultivation were further studied. Glucose and illumination promoted cell growth but did not favor PHB synthesis. After 7 days of growth under nitrogen-starved photoautotrophic conditions, the intracellular level of PHB was up to 4.1% of cellular dry weight and the PHB concentration in the culture broth was 27 mg/l.  相似文献   

6.
基于Sf21昆虫细胞在悬浮培养过程中所表现出的生长代谢特征,提出以培养液中残糖浓度作为控制参数,并利用限制性基质(葡萄糖和蛋白水解物)的间歇补加技术调控细胞生长的方案。实际控制表明:与批培养相比,Sf21细胞在两种具代表性的昆虫细胞培养基(IPL-41和TC-100)中的生长期和稳定期都得到了有效的延长。TC-100培养液中最高细胞培养密度由3.0×106 cells/mL提高到6.5×106 cells/mL;IPL41培养液中最高细胞培养密度则由7.05×106 cells/mL提高到9.0×106cells/mL。由于限制性基质的间歇补加技术是利用较确定的营养成分来代替复杂昂贵的补料培养基,因此更适合于昆虫细胞的大规模高密度培养。  相似文献   

7.
The formation of polyhydroxyalkanoates granules in anaerobically grown Escherichia coli cells was found to be preceded by the intracellular accumulation of carbonic acids (predominantly, acetic acid), amounting to 9% of the cytosol. The intracellular concentration of acidic metabolites increased after the lyophilization of the bacterial biomass and decreased after its long-term storage (3.5-13.5 years). The decrease in the concentration of acidic metabolites is likely due to the dehydration of dimeric carbonic acids in the viscoelastic cytosol of resting bacterial cells. The hydrophobic obligately aerobic cells of Acinetobacter calcoaceticus IEGM 549 are able to utilize a wide range of growth substrates (from acetate and citrate to hydrophobic hydrocarbons), which is considerably wider than the range of the growth substrates of E. coli (predominantly, carbohydrates). The minimal essential and optimal concentrations of orthophosphates in the growth medium of A. calcoaceticus were found to be tens of times lower than in the case of E. coli. The intracellular content of orthophosphates in A. calcoaceticus cells reached 35-77% of the total phosphorus content (Ptotal), providing for the intense synthesis of polyphosphates. The Ptotal of the A. calcoaceticus cells grown in media with different proportions between the concentrations of acetate and phosphorus varied from 0.7 to 3.3%, averaging 2%. This value of Ptotal is about two times higher than that observed for fermenting E. coli cells. Lowering the cultivation temperature of A. calcoaceticus from 37-32 to 4 degrees C augmented the accumulation of orthophosphates in the cytoplasm, presumably owing to a decreased requirement of growth processes for orthophosphate. In this case, if the concentration of phosphates in the cultivation medium was low, they were completely depleted.  相似文献   

8.
基于r21昆虫细胞在浮过程中所表现出的生长代谢特征,提出以培养液中残糖浓度作为控制参数,并利用限制性基质(葡萄糖和蛋白水解物)的间歇补加技术调控细胞生长的方案。实际控制表明:与批培养相比,S1f21细胞在两种具代表性的昆虫水解物)的间歇补加调控细胞生长的方案。实际控制表明:与批培养相比,Sf21细胞在两种具代表性的昆虫细胞培养基(IPL-41和TC-100)中的生长期和稳定期部都到有效的延长。TC  相似文献   

9.
The “attached cultivation” method of microalgae in which the wet paste of algal biomass is attached onto supporting materials to form an immobilized biofilm layer, and the culture medium is supplied to this layer to provide nutrients and moisture for growth was highly efficient in biomass production and represents a promising technology to improve the biofuel industry. To optimize the nitrogen supply strategy for this attached cultivation method, the growth and total lipids accumulation properties for the green alga Aucutodesmus obliquus with this method were studied under different quantities of nitrogen source and different volumes of aqueous medium that continuously circulated inside the photobioreactor. Results showed that, compared with medium volume, the nitrogen quantity was a stronger factor affecting the growth and total lipid accumulation. An optimized nitrogen supply strategy for the attached cultivation of A. obliquus is proposed as circulating ca. 60 L of BG-11 medium containing 1/10 of nitrate concentration for 1 m2 of cultivation surface. With this strategy, the attached A. obliquus accumulated biomass and total lipids simultaneously and obtained a high triacylglyceride productivity of 2.53 g m?2 day?1 in 7 days under subsaturated illumination of 100 μmol photons m?2 s?1. The water usage of 60 L m?2 was potentially decreased to <2 L m?2 if the nutrient supply was further improved. Dissolving the nitrogen source in small volume was the best way to efficiently utilize the nitrogen source with minimum of waste.  相似文献   

10.
This study employed in vitro seed culture to determine how C and N supply influence the growth (i.e. starch accumulation) and protein composition of maize (Zea mays L.) endosperm. Immature kernels were grown to maturity on liquid medium containing various concentrations of C (sucrose at 234 millimolar [low] and 468 millimolar [high]) and N (amino acid mixture ranging in N from 0 to 144 millimolar). Low C supply limited starch, but not N, accumulation in the endosperm. With high C, endosperm starch and protein content increased concomitantly as N supply increased from 0 to 13.4 millimolar. Endosperm growth was unaffected by additional N until concentrations exceeding approximately 72 millimolar reduced starch accumulation. A similar inhibition of starch deposition occurred with lower N concentrations when kernels were grown with low C. Endosperm total N content reached a point of saturation with approximately 36 millimolar N in the medium, regardless of C supply. Zein synthesis in the endosperm responded positively across all N levels, while glutelin content remained static and albumin/globulin proteins were reduced in amount when N supply was greater than 36 millimolar. A reciprocal, inverse relationship was observed in mature endosperm tissue between the concentrations of free amino acids and soluble sugars. Our data suggest that under N stress starch and protein accumulation in the endosperm are interdependent, at least in appearance, but are independent otherwise.  相似文献   

11.
The synthesis and uptake of intracellular organic osmolytes (compatible solutes) were studied with the aid of natural abundance 13C NMR spectroscopy in two unrelated, moderately halophilic eubacteria: Ba1 and Vibrio costicola. In minimal media containing 1 M NaCl, both microorganisms synthesized the cyclic amino acid, 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (trivial name, ectoine) as the predominant compatible solute, provided that no glycine betaine was present in the growth medium. When, however, the minimal medium was supplemented with glycine betaine or the latter was a component of a complex medium, it was transported into the cells and the accumulating glycine betaine replaced the ectoine. In Ba1, grown in a defined medium containing glucose as the single carbon source, ectoine could only be detected if the NaCl concentration in the medium was higher than 0.6 M; the ectoine content increased with the external salt concentration. At NaCl concentrations below 0.6 M, alpha,alpha-trehalose was the major organic osmolyte. The concentration of ectoine reached its peak during the exponential phase and declined subsequently. In contrast, the accumulation of glycine betaine continued during the stationary phase. The results presented here indicate that, at least in the two microorganisms studied, ectoine plays an important role in haloadaptation.  相似文献   

12.
The study of the effect of different ethanol concentrations in the medium on the growth and the activity of enzymatic systems involved in ethanol oxidation in Yarrowia lipolytica showed that the cultivation of yeast cells on 1 and 2% ethanol caused their rapid growth and a drastic increase in cell respiration and sensitivity to cyanide already in the first hours of cultivation. At the same time, during cultivation on 3, 4, and 5% ethanol, the growth and respiration of yeast cells were considerably suppressed. All of the ethanol concentrations studied induced the synthesis of cytochrome P-450, its dynamics in cells being dependent on the initial concentration of ethanol in the medium. When the initial concentration of ethanol was 1 and 2%, the content of cytochrome P-450 in cells steeply decreased after a short period of induction. But when the initial concentration of ethanol in the medium was 3 to 5%, the content of cytochrome P-450 in cells was high throughout the cultivation period. The induction of cytochrome P-450 in cells preceded the induction of the NAD-dependent enzymes alcohol dehydrogenase and catalase, which, like cytochrome P-450, are also involved in ethanol oxidation by yeasts. The activity of catalase was higher in the yeast cells grown in the presence of 3 to 5% ethanol than in the cells grown in the presence of 1 and 2% ethanol. The roles played by cytochrome P-450, alcohol dehydrogenase, and catalase in ethanol oxidation by yeast cells are discussed.  相似文献   

13.
The influence of cultivation conditions on the growth and pigmentation of S. marcescens was studied. The cultures under study grew in media containing glycerin, glucose or acetate and organic or mineral nitrogen. Pigment formation occurred in a medium with organic nitrogen and glycerin or acetate, but not glucose. Sodium chloride inhibited the growth of cultures, but at a concentration not exceeding 4-5% increased the accumulation of prodigiosin. Prodigiosin was accumulation by the culture growing at 28 degrees C, while at 37 degrees C no accumulation of the pigment occurred. The illumination of the growing culture with visible light decreased the intensity of its pigmentation. Prodigiosin apparently plays an important role in the metabolism of S. marcescens and is linked with the energy exchange of the cell.  相似文献   

14.
Summary Suspension-cultured cells of Catharanthus roseus (L.) G. Don were immobilized on glass fibre mats and cultivated in shake flasks. The highly-aggregated immobilized cells exhibited a slower growth rate and accumulated reduced levels of tryptamine and indole alkaloids, represented by catharanthine and ajmalicine, in comparison to cells in suspension. The increased total protein synthesis in immobilized cells suggests a diversion of the primary metabolic flux toward protein biosynthetic pathways and away from other growth processes. In vitro assays for the specific activity of tryptophan decarboxylase (TDC) and tryptophan synthase (TS) suggest that the decreased accumulation of tryptamine in immobilized cells was due to reduced tryptophan biosynthesis. The specific activity of TDC was similar in immobilized and suspension-cultured cells. However, the expression of TS activity in immobilized cells was reduced to less than 25% of the maximum level in suspension-cultured cells. The reduced availability of a free tryptophan pool in immobilized cells is consistent with the reduced TS activity. Reduced tryptamine accumulation, however, was not responsible for the decreased accumulation of indole alkaloids in immobilized cells. Indole alkaloid accumulation increased to a similar level in immobilized and suspension-cultured cells only after the addition of exogenous secolaganin to the culture medium. The addition of tryptophan resulted in increased accumulation of tryptamine, but had no effect on indole alkaloid levels. Reduced biosynthesis of secologanin, the monoterpenoid precursor to indole alkaloids, in immobilized cells is suggested. Immobilization does not appear to alter the activity of indole alkaloid biosynthetic enzymes in our system beyond, and including, strictosidine synthase. Offprint requests to: P. J. Facchini  相似文献   

15.
The effect of increasing the embryo:medium volume ratio on overcoming the hamster two-cell block was examined. Two-cell golden hamster embryos from each superovulated female were cultured in microdrops (estimated at 0.75 microliter) or 100 microliter macrodrops of chemically defined medium (modified Tyrode's solution [TLP] plus glutamine, isoleucine, methionine, phenylalanine, and taurine). In 11 trials (i.e., with embryos from 11 donors), 28.6% of 269 embryos developed to the four-cell stage in microdrops, whereas only 2 (0.7%) embryos developed in the macrodrops. When two microdrops were used to culture the two-cell embryos from each donor (n = 8), 17.8% of 304 embryos developed to four cells. Increasing the embryo:medium volume ratio further by culturing all of the embryos from each donor (n = 10) in single microdrops resulted in 53.1% of 397 embryos developing to four cells. Conditioning of the culture medium by these embryos could not be demonstrated. Increasing the embryo:medium volume ratio may protect against loss of some intracellular component essential for growth of early-stage hamster embryos. Alternatively, increasing this ratio may permit embryos to reduce the concentration of a substance detrimental to their growth. This work represents the first report of cleavage of hamster two-cell embryos in vitro. These findings are a significant step towards our goal of obtaining complete preimplantation developmental of hamster embryos in vitro and may be helpful for solving the in vitro developmental blocks in embryos from other species.  相似文献   

16.
Baby hamster kidney cells, bovine aortal endothelial cells, bovine smooth muscle cells, and chick embryo fibroblasts were all observed to attach and grow on serotonin which had been immobilized by covalent coupling to agarose beads. While growth and morphology of cells on immobilized serotonin appeared normal, a change in cell function may have occurred since the pattern of polypeptides expressed by these cells was different from that of cells grown on two other substrates: immobilized fibronectin and tissue culture plastic. By changing the composition of the fetal calf serum proteins in the growth medium it was shown that cells attach directly to immobilized fibronectin without mediation by medium components. In contrast, cells were found not to attach directly to immobilized serotonin but to attach indirectly via factors absorbed onto immobilized serotonin from fetal calf serum. The major component of this cell attachment activity was shown not to be fibronectin and was identified following separation by SDS-PAGE, electroblotting, and cell binding on nitrocellulose filters. The cell attachment activity compromises a major protein species of Mr 70,000 which is the molecular size of the recently identified serum spreading factor also called vitronectin.  相似文献   

17.
Tobacco and carnation plantlets were grown in vitro on Murashige and Skoog's medium with 2 % saccharose. Carnation plantlets were also grown fully photoautotrophically on a medium without saccharose. The ambient CO2 concentration was increased from 0.6 to 10 or 40 g m-3 during the last 3 weeks of in vitro cultivation or during the first 3 weeks of acclimation to ex vitro condition (plantlets transplanted to pots with sand and nutrient solution) or during both growth phases. CO2 enrichment during in vitro cultivation markedly stimulated growth of tobacco plantlets, and also of carnation plantlets, both with and without saccharose. CO2 enrichment during the acclimation period promoted plant growth more effectively in plantlets grown in vitro at a CO2 concentration of 0.6 g m-3 than in plantlets grown in either growth phase at higher CO2 concentrations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The inhibition of the exponential growth of Escherichia coli K-12 by different phenolic compounds was examined. Cells entrapped in calcium alginate showed a greater tolerance than cells grown in suspension. The extent of inhibition of growth of the immobilized cells depended on the period of growth in the gel matrix. After the addition of bacteriostatic concentrations of phenol or 4-chlorophenol, a dose-dependent efflux of metabolites such as ATP and of K+ ions was elicited. Provided that glucose was supplied as an energy substrate, a reaccumulation of K+ ions at low phenol concentrations was observed. The restoration of the membrane gradient for K+ always preceded the continuation of growth in the presence of the toxic compounds. Compared with free cells, those cells immobilized and grown in alginate suffered a smaller loss of cations after the addition of 4-chlorophenol. The reestablishment of gradients was observed at higher concentrations of the pollutants with entrapped cells than with free cells. Corresponding to the increase in tolerance, the membrane damage was reduced in cells grown in immobilized form for longer times. These data offer a mechanistic explanation of the protection of immobilized microorganisms from phenolic solvents. The data point to the membrane as an important cell component in the toxicity of these pollutants.  相似文献   

19.
The inhibition of the exponential growth of Escherichia coli K-12 by different phenolic compounds was examined. Cells entrapped in calcium alginate showed a greater tolerance than cells grown in suspension. The extent of inhibition of growth of the immobilized cells depended on the period of growth in the gel matrix. After the addition of bacteriostatic concentrations of phenol or 4-chlorophenol, a dose-dependent efflux of metabolites such as ATP and of K+ ions was elicited. Provided that glucose was supplied as an energy substrate, a reaccumulation of K+ ions at low phenol concentrations was observed. The restoration of the membrane gradient for K+ always preceded the continuation of growth in the presence of the toxic compounds. Compared with free cells, those cells immobilized and grown in alginate suffered a smaller loss of cations after the addition of 4-chlorophenol. The reestablishment of gradients was observed at higher concentrations of the pollutants with entrapped cells than with free cells. Corresponding to the increase in tolerance, the membrane damage was reduced in cells grown in immobilized form for longer times. These data offer a mechanistic explanation of the protection of immobilized microorganisms from phenolic solvents. The data point to the membrane as an important cell component in the toxicity of these pollutants.  相似文献   

20.
The calcium content of the growth medium has been shown to influence the growth and differentiation of primary epithelial cells in culture. The goal of the present study was to determine if growth medium calcium concentration could influence the susceptibility to metal toxicity and metallothionein gene expression of an immortalized human prostate-derived epithelial cell line (RWPE-1). The RWPE-1 cell line was grown in medium containing either 0.1 or 1.4 mM calcium. Confluent cells were exposed to either Zn+2 (50, 100, or 150 μM) or Cd+2 (3, 6, or 12 μM) for 13 days, and cell toxicity and MT gene expression were determined along the time course of exposure. It was demonstrated that the calcium content of the growth medium had a marked influence on Zn+2 toxicity and a lesser but significant effect on Cd+2 toxicity to the RWPE-1 cells. Calcium concentration of the growth medium was also shown to alter the accumulation of MT-1/2 protein and MT-1E, MT-1X, and MT-2A mRNAs. It was shown that MT-1/2 protein was markedly increased for metal-exposed cells grown in medium containing 0.1 mM calcium; however, the increased expression did not cause an increase in the resistance of the cells to Zn+2 or Cd+2 exposure. These observations show that growth medium calcium concentration can influence metal toxicity and the pattern of expression of the MT mRNAs and protein for RWPE-1 cells. The results suggest that caution should be exercised when comparing toxicological responses between cell lines that may be grown in growth formulations differing in calcium concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号