首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adrenalectomy (ADX) prevents the excessive weight gain in the genetically obese ob/ob and db/db mice. To test the possibility that this results from increased energy expenditure due to increased thermogenesis in brown adipose tissue (BAT), we measured GDP binding to mitochondria from interscapular brown adipose tissue (BAT) in db/db and ob/ob mice and their lean controls after adrenalectomy, with and without corticosterone replacement. Both the vehicle treated and corticosterone treated db/db and ob/ob mice had lower body weights than the sham-operated mice GDP binding to mitochondria from IBAT was significantly lower in both the db/db and ob/ob mice than in their lean controls. Adrenalectomy significantly increased GDP binding in all mice compared to the respective sham-operated mice, but, the percentage increase was always greater in the db/db and ob/ob mice. Corticosterone treatment of adrenalectomized db/db, ob/ob or lean mice lowered GDP binding to sham levels. Our data confirm previous findings that adrenalectomy results in increased GDP binding to mitochondria from IBAT. Injections of corticosterone into adrenalectomized mice results in a decrease in GDP binding to values which are similar to values in sham-operated mice. Thus adrenalectomy may inhibit the development of obesity by increasing the thermic activity in IBAT.  相似文献   

2.
Liver X receptor (LXR) ligands are currently being evaluated as potential therapeutic agents for the treatment of low HDL. The LXR ligand T0901317 elevates ATP binding cassette transporter A1 (ABCA1) and HDL levels in animal models and induces moderate lipogenesis through upregulation of sterol regulatory element binding protein 1c (SREBP1c). Because insulin may also regulate lipogenesis through SREBP1c and fatty acid synthase (FAS), we investigated the effect of an LXR ligand in hyperinsulinemic mice. Administration of T0901317 to male db/db mice for 12 days resulted in a more severe hypertriacylglycerolemia and hepatic triacylglycerol accumulation than observed in nondiabetic mice. The LXR target genes ABCA1, SREBP1c, FAS, and stearoyl-CoA desaturase 1 were upregulated by T0901317 treatment in both diabetic db/db and nondiabetic C57BLKS mice. Changes in lipogenic gene expression were independent of mouse strain, indicating that the severe lipogenesis observed in LXR ligand-treated db/db mice was not due to additive effects of insulin on lipogenic gene expression. Phosphoenolpyruvate carboxykinase expression was suppressed, suggesting that a shift from gluconeogenesis toward lipogenesis could partially explain our observations in db/db mice. Our data suggest that LXR ligands that have effects on both fatty acid and carbohydrate metabolism should be carefully evaluated in obesity, insulin, and leptin resistance.  相似文献   

3.
Control db/+ and diabetic db/db mice at 6 and 12 wk of age were subjected to echocardiography to determine whether contractile function was reduced in vivo and restored in transgenic db/db-human glucose transporter 4 (hGLUT4) mice (12 wk old) in which cardiac metabolism has been normalized. Systolic function was unchanged in 6-wk-old db/db mice, but fractional shortening and velocity of circumferential fiber shortening were reduced in 12-wk-old db/db mice (43.8 +/- 2.1% and 8.3 +/- 0.5 circs/s, respectively) relative to db/+ control mice (59.5 +/- 2.3% and 11.8 +/- 0.4 circs/s, respectively). Doppler flow measurements were unchanged in 6-wk-old db/db mice. The ratio of E and A transmitral flows was reduced from 3.56 +/- 0.29 in db/+ mice to 2.40 +/- 0.20 in 12-wk-old db/db mice, indicating diastolic dysfunction. Thus a diabetic cardiomyopathy with systolic and diastolic dysfunction was evident in 12-wk-old diabetic db/db mice. Cardiac function was normalized in transgenic db/db-hGLUT4 mice, indicating that altered cardiac metabolism can produce contractile dysfunction in diabetic db/db hearts.  相似文献   

4.
A method has been developed to isolate skeletal muscle plasma membranes from mice in good yield without harsh extraction procedures. The method involves perfusion of mouse hindquarters with a calcium-deficient buffer containing collagenase and hyaluronidase. This is followed by gentle disruption, filtration, and differential centrifugations. The entire procedure takes about six hours and the yield is approximately 4 mg. protein from 10 g. equivalent of hindquarter muscle. The preparation contained predominantly plasma membranes based on specific activities of marker enzymes, electron microscopic data, and specific binding sites for insulin and a -adrenergic ligand. Studies using such preparations from lean, 4-5 week old and 12-20 week old db/db mice showed marked reduction in the phosphorylation of the 95 kDa subunit of the insulin receptor of the obese mice with no change in insulin binding. In addition, there was a progressive reduction in insulin sensitivity in stimulating receptor phosphorylation in the db/db mice.  相似文献   

5.
The etiology of bone loss in non-insulin dependent diabetes mellitus is still unknown. We compared serum biochemical parameters and bone parameters of genetically diabetic db/db mice with those of their control non-diabetic +/+ mice. We found that serum corticosterone levels of the db/db mice were significantly elevated after 5 weeks while bone mineral density of femur metaphysis significantly decreased in the db/db mice after 12 weeks of age compared with age matched +/+ mice. To explore the causal relationship between the serum corticosterone levels and the bone loss, metyrapone (100 mg/kg, p.o., twice a day), a glucocorticoid synthesis inhibitor, was administered to these mice for 4 weeks after the age of 8 weeks. The compound significantly decreased serum corticosterone levels in both strains. Metyrapone prevented bone loss by increasing the bone mineral content of the metaphysis in the db/db mice. In addition, the treatment slightly improved the ratio of ash weight to dry weight in the db/db mice. These results suggest that increased serum corticosterone levels are concerned with the etiology of bone loss in non-insulin dependent diabetic db/db mice.  相似文献   

6.
Epidemiological studies indicate the incidence of asthma is increased in obese and overweight humans. Responses to ozone (O(3)), an asthma trigger, are increased in obese (ob/ob) mice lacking the satiety hormone leptin. The long form of leptin receptor (Ob-R(b)) is required for satiety; mice lacking this receptor (db/db mice) are also substantially obese. Here, wild-type (WT) and db/db mice were exposed to air or O(3) (2 ppm) for 3 h. Airway responsiveness, measured by the forced oscillation technique, was greater in db/db than WT mice after air exposure. O(3)-induced increases in pulmonary resistance and airway responsiveness were also greater in db/db mice. BALF eotaxin, IL-6, KC, and MIP-2 increased 4 h after O(3) exposure and subsided by 24 h, whereas protein and neutrophils continued to increase through 24 h. For each outcome, the effect of O(3) was significantly greater in db/db than WT mice. Previously published results obtained in ob/ob mice were similar except for O(3)-induced neutrophils and MIP-2, which were not different from WT mice. O(3) also induced pulmonary IL-1beta and TNF-alpha mRNA expression in db/db but not ob/ob mice. Leptin was increased in serum of db/db mice, and pulmonary mRNA expression of short form of leptin receptor (Ob-R(a)) was similar in db/db and WT mice. These data confirm obese mice have innate airway hyperresponsiveness and increased pulmonary responses to O(3). Differences between ob/ob mice, which lack leptin, and db/db mice, which lack Ob-R(b) but not Ob-R(a), suggest leptin, acting through Ob-R(a), can modify some pulmonary responses to O(3).  相似文献   

7.
Ginseng berry reduces blood glucose and body weight in db/db mice.   总被引:3,自引:0,他引:3  
In this study, we observed anti-diabetic and anti-obesity effects of Panax ginseng berry in adult C57BL/Ks db/db mice and their lean littermates. Animals received daily intraperitoneal injections of Panax ginseng berry extract at 150 mg/kg body wt. for 12 consecutive days. On Day 5, the extract-treated db/db mice had significantly lower fasting blood glucose levels as compared to vehicle-treated mice (180.5+/-10.2 mg/dl vs. 226.0+/-15.3 mg/dl, P < 0.01). On day 12, the extract-treated db/db mice were normoglycemic (134.3+/-7.3 mg/dl) as compared to vehicle-treated mice (254.8+/-24.1 mg/dl; P < 0.01). Fasting blood glucose levels of lean mice did not decrease significantly after treatment with extract. After 12 days of treatment with the extract, glucose tolerance increased significantly, and overall blood glucose exposure calculated as area under the curve (AUC) decreased 53.4% (P < 0.01) in db/db mice. Furthermore, db/db mice treated with extract (150 mg/kg body wt.) showed weight loss from 51.0+/-1.9 g on Day 0, to 46.6+/-1.7 g on Day 5, and to 45.2+/-1.4 g on Day 12 (P < 0.05 and P < 0.01 compared to Day 0, respectively). The body weight of lean littermates also decreased at the same dose of extract. These data suggest that Panax ginseng berry extract may have therapeutic value in treating diabetic and obese patients.  相似文献   

8.
Insulin binding and insulin receptor tyrosine kinase activity were examined in two rodent models with genetic insulin resistance using partially-purified skeletal muscle membrane preparations. Insulin binding activity was decreased about 50% in both 12-week (219 +/- 184 vs 1255 +/- 158 fmoles/mg, p less than 0.01) and 24-week old (2120 +/- 60 vs 1081 +/- 60 fmoles/mg, p less than 0.01) ob/ob mice. In contrast, insulin binding to membrane derived from 24-week old db/db mice was not significantly different from lean controls (1371 +/- 212 vs 1253 +/- 247 fmoles/mg). Insulin-associated tyrosine kinase activity of membranes from ob/ob skeletal muscle was decreased, compared to its normal lean littermate, when compared on a per mg of protein basis in both 12-week (37 +/- 3 vs 21 +/- 3 pmoles/min/mg, p less than 0.05) and 24-week old (71 +/- 5 vs 37 +/- 6 pmoles/min/mg, p less than 0.01) mice. However, no significant differences in kinase activities were observed when the data were normalized and compared on a per fmole of insulin-binding activity basis for the 12-week (12 +/- 1 vs 11 +/- 2) and 24-week (27 +/- 2 vs 20 +/- 3) age groups. Insulin receptor tyrosine kinase activity of db/db skeletal muscle membranes was not different than its normal lean littermate whether expressed on a protein (34 +/- 7 vs 30 +/- 3) or fmole of insulin-binding activity (21 +/- 4 vs 18 +/- 4) basis. These data suggest that insulin receptor tyrosine kinase is not associated with the insulin resistance observed in ob/ob and db/db mice and demonstrate differences in receptor regulation between both animal models.  相似文献   

9.
Expression of the diabetes ( db/db) genotype mutation in female C57BL/KsJ mice induces a complex diabetes-obesity syndrome (DOS) responsible for reproductive tract involution promoted by hypercytolipidemia (HCL). Current studies define the complex and influences of the endometabolic variables that promote reproductive tract involution at the time of initial db/db mutation expression onset in female C57BL/KsJ mice. Littermate-paired, normal ( +/?) and db/db groups were isolated between 2 - 4 weeks of age and tissue samples analyzed for utero-ovarian alterations induced by the systemic, tissue, cellular and structural consequences of mutation expression. Significantly elevated body weights, blood glucose concentrations and serum insulin levels contrasted with atrophic utero-ovarian indices in db/db mutants compared to +/? groups. The onset of the db/db-expression promoted obesity and a mild hyperglycemic-hyperinsulinemic state. Initial db/db expression was characterized by significantly increased utero-ovarian insulin binding without variation in membrane insulin receptor concentrations. However, significant elevations in tissue glucose sequestration rates, norepinephrine (NE) concentrations and triacylglyceride lipase activity in db/db groups indicated that a complex of endometabolic counter-regulatory influences promoted the metabolic shunting of excess glucose and triglyceride moieties towards hypercytolipidemic storage. The resulting DOS-promoted accumulation of utero-ovarian cytolipidemic pools compromised reproductive tract cytoarchitecture in db/db mice. The results of these studies indicate that the inability of utero-ovarian tissue compartments to exhibit metabolic adaptation to the enhanced availability, transport and cellular imbibition of extracellular glucose-lipid pools promotes the initial cellular compromise recognized to induce reproductive failure in db/db mutants.  相似文献   

10.
Human Type 2 diabetes is associated with increased incidence of hypertension and disrupted blood pressure (BP) circadian rhythm. Db/db mice have been used extensively as a model of Type 2 diabetes, but their BP is not well characterized. In this study, we used radiotelemetry to define BP and the circadian rhythm in db/db mice. We found that the systolic, diastolic, and mean arterial pressures were each significantly increased by 11, 8, and 9 mmHg in db/db mice compared with controls. In contrast, no difference was observed in pulse pressure or heart rate. Interestingly, both the length of time db/db mice were active (locomotor) and the intensity of locomotor activity were significantly decreased in db/db mice. In contrast to controls, the 12-h light period average BP in db/db mice did not dip significantly from the 12-h dark period. A partial Fourier analysis of the continuous 72-h BP data revealed that the power and the amplitude of the 24-h period length rhythm were significantly decreased in db/db mice compared with the controls. The acrophase was centered at 0141 in control mice, but became scattered from 1805 to 0236 in db/db mice. In addition to BP, the circadian rhythms of heart rate and locomotor activity were also disrupted in db/db mice. The mean arterial pressure during the light period correlates with plasma glucose, insulin, and body weight. Moreover, the oscillations of the clock genes DBP and Bmal1 but not Per1 were significantly dampened in db/db mouse aorta compared with controls. In summary, our data show that db/db mice are hypertensive with a disrupted BP, heart rate, and locomotor circadian rhythm. Such changes are associated with dampened oscillations of clock genes DBP and Bmal1 in vasculature.  相似文献   

11.
Diabetic db/db mice exhibit profound insulin resistance in vivo, but the specific degree of cardiac insensitivity to insulin has not been assessed. Therefore, the effect of insulin on cardiomyocytes from db/db hearts was assessed by measuring two metabolic responses (deoxyglucose uptake and fatty acid oxidation) and the phosphorylation of two enzymes in the insulin-signaling cascade [Akt and AMP-activated protein kinase (AMPK)]. Maximal insulin-stimulated deoxyglucose transport was reduced to 58 and 40% of control in cardiomyocytes from db/db mice at two ages (6 and 12 wk). Insulin-stimulated deoxyglucose uptake was also reduced in myocytes from transgenic db/db mice overexpressing the insulin-sensitive glucose transporter (db/db-hGLUT4). Treatment of db/db mice for 1 wk with an insulin-sensitizing peroxisome proliferator-activated receptor-gamma agonist (COOH) completely normalized insulin-stimulated deoxyglucose uptake. Insulin had no direct effect on palmitate oxidation by either control or db/db cardiomyocytes, but the combination of insulin and glucose reduced palmitate oxidation, likely an indirect effect secondary to increased glucose uptake. Insulin had no effect on AMPK phosphorylation from either control or db/db cardiomyocytes. Insulin increased the phosphorylation of Akt in all cardiomyocyte preparations (control, db/db, COOH-treated db/db) to the same extent. Thus insulin has selective metabolic actions in mouse cardiomyocytes; deoxyglucose uptake and Akt phosphorylation are increased, but fatty acid oxidation and AMPK phosphorylation are unchanged. Insulin resistance in db/db cardiomyocytes is manifested by reduced insulin-stimulated deoxyglucose uptake.  相似文献   

12.
Clinical studies have reported that the incidence and severity of myocardial infarction is significantly greater in diabetics compared with nondiabetics after correction for all other risk factors. The majority of studies investigating the pathophysiology of myocardial ischemia-reperfusion injury have focused on otherwise healthy animals. At present, there is a paucity of experimental investigations on the pathophysiology of heart failure in diabetic animals. We hypothesized that the severity of myocardial reperfusion injury and the development of congestive heart failure would be markedly enhanced in the db/db diabetic mouse. Accordingly, we studied the effects of varying durations of in vivo myocardial ischemia and reperfusion on the incidence of heart failure in db/db diabetic mice. Nondiabetic and db/db diabetic mice (10 wk of age) were subjected to 30, 45, or 60 min of left coronary artery occlusion and 28 days of reperfusion. Survival at 24 h of reperfusion was 100% in nondiabetic mice subjected to 30 min of myocardial ischemia and 88% in nondiabetic mice subjected to 45 min of myocardial ischemia. In contrast, survival was 53% in db/db diabetic mice subjected to 30 min of myocardial ischemia and 44% in db/db mice after 45 min of myocardial ischemia. Prolonged survival in nondiabetic mice was not significantly attenuated when compared during the 28-day follow-up period with all groups experiencing >90% survival. Prolonged survival was significantly decreased in db/db mice after both 30 and 45 min of myocardial ischemia compared with sham controls. Furthermore, we observed a significant degree or left ventricular dilatation, cardiac hypertrophy, and cardiac contractile dysfunction in db/db mice subjected to 45 min of myocardial ischemia and 28 days reperfusion. In nondiabetic mice subjected to 45 min of myocardial ischemia, we failed to observe any changes in left ventricular dimensions or fractional shortening. These studies provide a feasible experimental model system for the investigation of heart failure secondary to acute myocardial infarction in the db/db diabetic mouse.  相似文献   

13.
利用半定量RT-PCR和免疫组化的方法同时从mRNA水平和蛋白质水平对血管生成素样蛋白2在不同病理阶段的2型糖尿病肾病模型小鼠--db/db小鼠肾脏中的表达情况进行了较为系统的分析.结果发现:a.在糖尿病前的db/db小鼠(4周龄的db/db小鼠),血管生成素样蛋白2与作为正常对照的db/m小鼠相比,差异不是很大,随着肥胖的加剧,高血糖、蛋白尿的出现,血管生成素样蛋白2在db/db小鼠肾脏中的表达无论从mRNA水平还是从蛋白质水平均显著升高.b.从免疫组化的分析结果来看,血管生成素样蛋白2主要分布于小鼠肾脏的肾小球部分,主要是沿毛细血管袢呈线性分布,其位置与足细胞的位置重叠,足细胞是小鼠肾脏中血管生成素样蛋白2的主要分泌细胞.c.小鼠肾脏血管生成素样蛋白2的表达水平似乎还与鼠龄相关:虽然变化幅度不是很大,但在周龄较大的小鼠(如20周龄以上),其表达水平相对较高.上述工作不仅印证了先前对2型糖尿病肾病患者肾小球基因表达谱的分析结果,更加明确了血管生成素样蛋白2与糖尿病肾病的相关性,同时揭示了血管生成素样蛋白2在正常小鼠和糖尿病肾病小鼠肾脏中的表达、分布和变化规律,有利于进一步揭示血管生成素样蛋白2的功能及其在糖尿病肾病发生、发展过程中的可能作用,探讨糖尿病肾病的分子机制.  相似文献   

14.
The db/db mouse is a well-established model of diabetes. Previous reports have documented contractile dysfunction (i.e., cardiomyopathy) in these animals, although the extant literature provides limited insights into cardiac structure and function as they change over time. To better elucidate the natural history of cardiomyopathy in db/db mice, we performed cardiac magnetic resonance (CMR) scans on these animals. CMR imaging was conducted with a 4.7-T magnet on female db/db mice and control db/+ littermates at 5, 9, 13, 17, and 22 wk of age. Gated gradient echo sequences were used to obtain cineographic short-axis slices from apex to base. From these images left ventricular (LV) mass (LVM), wall thickness, end-diastolic volume (LVEDV), and ejection fraction (LVEF) were determined. Additionally, cardiac [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET scanning, pressure-volume loops, and real-time quantitative PCR on db/db myocardium were performed. Relative to control, db/db mice developed significant increases in LVM and wall thickness as early as 9 wk of age. LVEDV diverged slightly later, at 13 wk. Interestingly, compared with the baseline level, LVEF in the db/db group did not decrease significantly until 22 wk. Additionally, [(18)F]FDG metabolic imaging showed a 40% decrease in glucose uptake in db/db mice. Furthermore, contractile dysfunction was observed in 15-wk db/db mice undergoing pressure-volume loops. Finally, real-time quantitative PCR revealed an age-dependent recapitulation of the fetal gene program, consistent with a myopathic process. In summary, as assessed by CMR, db/db mice develop characteristic structural and functional changes consistent with cardiomyopathy.  相似文献   

15.
Summary Knowledge of the metabolic changes that occur in insulin-resistant type 2 diabetes is relatively lacking compared to insulin-deficient type 1 diabetes. This paper summarizes the importance of the C57BL/KsJ-db/db mouse as a model of type 2 diabetes, and illustrates the effects that insulin-deficient and insulin-resistant states have on hepatic glycogen metabolism. A longitudinal study of db/db mice of ages 2–15 weeks revealed that significant changes in certain parameters of hepatic glycogen metabolism occur during this period. The liver glycogen levels were similar between diabetic and control mice. However, glycogen particles from db/db mice were on average smaller in mass and had shorter exterior and interior chain lengths. Total phosphorylase and phosphorylase a activities were elevated in the genetically diabetic mice. This was primarily due to an increase in the amount of enzymic protein apparently the result of a decreased rate of degradation. It was not possible to find a consistent alteration in glycogen synthase activity in the db/db mice. Glycogen synthase and phosphorylase from diabetic liver revealed some changes in kinetic properties in the form of a decrease in Vmax, and altered sensitivity to inhibitors like ATP. The altered glycogen structure in db/db mice may have contributed to changes in the activities and properties of glycogen synthase and phosphorylase. The exact role played by hormones (insulin and glucagon) in these changes is not clear but further studies should reveal their contributions. The db/db mouse provides a good model for type 2 diabetes and for fluctuating insulin and glucagon ratios. Its use should clarify the regulation of hepatic glycogen metabolism and other metabolic processes known to be controlled by these hormones. The other animal models of type 2 diabetes, ob/ob mouse and fatty Zucker (fa/fa) rat, show similar impairment of hepatic glycogen metabolism. The concentrations of glycogen metabolizing enzymes are high and in vitro studies indicate enhanced rate of glycogen synthesis and breakdown. However, streptozotocin-induced diabetic animals and BB rats which resemble insulin-deficient type 1 diabetes are characterized by decreased glycogen turnover as a result of reduction in the levels of glycogen metabolizing enzymes.  相似文献   

16.
Changes in glucose transport and metabolism in skeletal muscles of the obese-diabetic mice (db/db) was characterized using the perfused mouse hindquarter preparation. Metabolism of [5-3H]glucose, uptake of 3-O-[methyl-3H]glucose (methylglucose) and [2-14C]deoxyglucose (deoxyglucose) was studied under resting, electrically stimulated contracting, and insulin-stimulated conditions. Basal rate of methylglucose uptake was 255 +/- 18 and 180 +/- 9 microliter/15 min per ml intracellular fluid space for lean and db/db mice, respectively. The V- of methylglucose transport was decreased with no change in Km in the db/db mice. Both electrical stimulation and insulin (1/mU/ml) increased methylglucose uptake rate 2-fold in both lean and obese mice. We observed no significant change in insulin sensitivity in the db/db mice in stimulating methylglucose uptake which was subnormal under all conditions. Similar results were obtained using deoxyglucose. Likewise, uptake of glucose and 3H2O production from [5-3H]glucose were significantly reduced, both at rest and during electrically stimulated contraction in the db/db mouse. However, lactate production in the electrically stimulated db/db mouse preparations was not significantly different from that in the lean mice. These data suggest a major contribution from an impaired glucose transport activity to the reduction in glucose metabolism in the db/db mouse skeletal muscle.  相似文献   

17.
The mechanism of a new hypoglycemic agent, AS-6, was comparatively studied using the adipocytes from AS-6 treated and untreated genetically obese diabetic mice, db/db. the db/db mice were treated for 1 week with a diet admixture of AS-6 (0.1%). The treatment resulted in the following alterations in metabolic activities; AS-6 treatment increased 125I-insulin binding by 1.4-3.3 fold over the insulin range of 1-1000 microU/ml, the treatment increased the basal activities in 2-deoxyglucose uptake, and in CO2 generation and lipogenesis from U-(14C)-glucose compared with the db/db controls, the treatment partially restored insulin responsiveness in 2-DG uptake and CO2 generation, and 1 mU/ml of insulin greatly stimulated lipogenesis by 5.6 fold above the basal in the control adipocytes while AS-6 treatment changed the lipogenic response less stimulative to the insulin. The results suggest that AS-6 treatment significantly increases insulin binding to the adipocytes associating with an enhancement in glucose metabolism under basal and physiological concentrations of insulin.  相似文献   

18.
Diabetes and obesity cause abnormal development of reproductive processes in a variety of species, but the mechanisms that underlie this effect have not been fully elucidated. This study examined the expressional changes of ganglioside GM3 during ovarian maturation, in vitro fertilization (IVF) and early embryonic development in diabetic/obese db/db mice. In high-performance thin-layer chromatography studies, GM3 expression was conspicuously low in the ovaries of db/db mice compared to non-diabetic db/+ mice. Signal detected by anti-GM3 monoclonal antibody was greatly reduced in the primary, secondary and graffian follicles of db/db mice compared to control mice. Results from IVF with ova and sperm from db/db mice showed that GM3 expression during early embryonic development was obviously decreased compared to db/+ mice. This study also elucidated the effects of high glucose (20 and 30 mm) on early embryonic development in ICR strain mice. High glucose caused a decrease in GM3 expression during early embryonic development. Taken together, the results of this study indicate decreased GM3 expression during ovarian maturation and embryonic development of db/db mice, suggesting that alteration of ganglioside expression induced by the diabetic condition may be implicated in the abnormal follicular embryonic development.  相似文献   

19.
糖尿病心肌病(diabetic cardiomyopathy, DCM)是指发生于糖尿病患者,不能用冠心病、高血压性心脏病及其他心脏病变来解释的心肌疾病。目前,DCM的病因和发病机制尚未完全阐明,且缺乏特异性治疗手段。中药管花肉苁蓉提取物松果菊苷(echinacoside, ECH)对心肌细胞具有保护作用。以db/m小鼠为正常对照组(db/m组),db/db小鼠分为模型组(db/db组)和ECH干预组(db/db+ECH组),探讨了ECH对糖尿病db/db小鼠心肌的影响及机制。db/db+ECH组小鼠给予松果菊苷灌胃,db/m组和db/db组小鼠给予0.9%氯化钠溶液灌胃。心脏超声观察心脏功能,Masson染色观察组织胶原纤维含量,逆转录聚合酶链式反应检测Ⅰ型胶原和Ⅲ型胶原mRNA的表达,蛋白质免疫印迹技术检测转化生长因子-β1(transforming growth factor-β1, TGF-β1)、phospho-Smad2(p-Smad2)和phospho-Smad3(p-Smad3)的表达。结果显示,ECH能够改善db/db小鼠左心室肥大和心脏功能,降低胶原沉积(P<...  相似文献   

20.
Although zinc (Zn) deficiency has been associated with insulin resistance, and altered Zn metabolism (e.g., hyperzincuria, low-normal plasma Zn concentrations) may be present in diabetes, the potential effects of Zn on modulation of insulin action in Type II diabetes have not been established. The objective of this study was to compare the effects of dietary Zn deficiency and Zn supplementation on glycemic control in db/db mice. Weanling db/db mice and lean littermate controls were fed Zn-deficient (3 ppm Zn; dbZD and InZD groups), Zn-adequate control (30 ppm Zn; dbC and InC groups) or Zn-supplemented (300 ppm Zn; dbZS and InZS groups) diets for 6 weeks. Mice were assessed for Zn status, serum and urinary indices of diabetes, and gastrocnemius insulin receptor concentration and tyrosine kinase activity. Fasting serum glucose concentrations were significantly lower in the dbZS group compared with the dbZD group (19.3 +/- 2.9 and 27.9 +/- 4.1 mM, respectively), whereas the dbC mice had an intermediate value. There was a negative correlation between femur Zn and serum glucose concentrations (r = -0.59 for lean mice, P = 0.007). The dbZS group had higher pancreatic Zn and lower circulating insulin concentrations than dbZC mice. Insulin-stimulated tyrosine kinase activity in gastrocnemius muscle was higher in the db/db genotype, and insulin receptor concentration was not altered. In summary, dietary Zn supplementation attenuated hyperglycemia and hyperinsulinemia in db/db mice, suggesting that the roles of Zn in pancreatic function and peripheral tissue glucose uptake need to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号