首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The translational motility of Pseudomonas fluorescens was weakly inhibited by oligomycin, Dicumarol, 2,4-dinitrophenol, 2n-heptyl-4-hydroxyquinoline N-oxide, and potassium cyanide. Atabrine and antimycin A together with potassium cyanide immediately immobilized this bacterium, but antimycin A alone was without effect. Gramicidin D also immobilized P. fluorescens, but its action was inhibited by K(+) and NH(4) (+) ions. In like manner, the effect of p-chloromercuribenzoate could be counteracted with cysteine, thereby suggesting the involvement of -SH groups in flagellar motility processes. It appears that the energy required for motility of P. fluorescens is generated by oxidative phosphorylation mediated by the cytochrome system.  相似文献   

2.
It has been shown that the induction of earlier described system of potassium-dependent transport of hydrogen ions in mitochondria at low pH values of the incubation medium is inhibited by the inhibitors of mitochondria respiratory chain and ATPase. It has been found that antimycin and oligomycin suppress the efflux of potassium ions from mitochondria in the presence of succinic acid. The uncoupler (FCCP) turns the effect of ATPase inhibitors to the efflux of potassium ions and acceleration of mitochondria respiration under experimental conditions. At the same time TMPD removes the effect of antimycin on potassium ion efflux from uncoupled FCCP of mitochondria. The data obtained are explained in terms of the postulate that under experimental conditions along with the system of potassium-dependent ion transport there appears leakage of protons through the ATPase channel. A conclusion is made concerning the control of ion transport induction in mitochondria by the enzymes of oxidative phosphorylation system.  相似文献   

3.
Single giant mitochondria isolated from mice fed cuprizone were assayed for their metabolic viability. Two tests were devised. One test optically detected the accumulation of calcium phosphate within the mitochondria under massive loading conditions (including the presence of succinate and ATP). The accumulation corresponds to a test of energy coupling from either electron transport or the hydrolysis of ATP since it is blocked by either antimycin A or oligomycin. The other assay tested for the production of ATP from ADP and Pi, using myofibrils. Myofibrils prepared from glycerinated rabbit psoas muscle contract only in the presence of ATP and not in the presence of ADP. Myofibrillar contraction is unaffected by the presence of antimycin A or oligomycin. However, myofibrils in the presence of mitochondria that are phosphorylating ADP to ATP do contract. This contraction is blocked by antimycin A and/or oligomycin. Hence, the ATP which causes myofibrillar contraction is produced by oxidative phosphorylation. At low mitochondrial concentration, only the myofibrils in close proximity with mitochondria contract in the presence of ADP. Therefore the assay can be used to test the viability of individual mitochondria. Individual giant mitochondria were found to be viable, using both of these assays. Comparable results were obtained in mitochondria impaled with microelectrodes. The potentials and resistances were unaffected by concomitant calcium phosphate accumulation or oxidative phosphorylation.  相似文献   

4.
The patterns of light activation of 4 chloroplastic enzymes were examined in mesophyll protoplasts of pea ( Pisum sativum ) in the absence or presence of oligomycin (inhibitor of oxidative phosphorylation) or antimycin A (inhibitor of cytochrome pathway) or salicylhydroxamic acid (SHAM, inhibitor of alternative pathway). The results were compared with those of DCMU (inhibitor of photosynthetic electron transport). The light activation of NADP glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), fructose-1,6-bisphosphatase (FBPase), phosphoribulokinase (PRK) (enzymes of the Calvin cycle) and NADP malate dehydrogenase (NADP-MDH) (reflects chloroplast redox state) was more pronounced at limiting CO2 (0.1 m M NaHCO3) than that at optimal CO2 (1.0 m M NaHCO3). SHAM decreased markedly (up to 33%) the light activation of all 4 enzymes, while antimycin A or oligomycin exerted only a limited effect (<10% decrease). Antimycin A or oligomycin or SHAM had no significant effect on light activation of these 4 enzymes in isolated chloroplasts. However, DCMU caused a remarkable decrease in light activation of enzymes in both protoplasts (up to 78%) and chloroplasts (up to 69%). These results suggest that the restriction of alternative pathway of mitochondrial metabolism results in a marked decrease in the light activation of key chloroplastic enzymes in mesophyll protoplasts but not in isolated chloroplasts. Such a decrease in the light activation of enzymes could be also a secondary feedback effect because of the restriction on carbon assimilation.  相似文献   

5.
The optimal light intensity required for photosynthesis by mesophyll protoplasts of pea (Pisum sativum) is about 1250 microeinsteins per square meter per second. On exposure to supra-optimal light intensity (2500 microeinsteins per square meter per second) for 10 min, the protoplasts lost 30 to 40% of their photosynthetic capacity. Illumination with normal light intensity (1250 microeinsteins per square meter per second) for 10 min enhanced the rate of dark respiration in protoplasts. On the other hand, when protoplasts were exposed to photoinhibitory light, their dark respiration also was markedly reduced along with photosynthesis. The extent of photoinhibition was increased when protoplasts were incubated with even low concentrations of classic respiratory inhibitors: 1 micromolar antimycin A, 1 micromolar sodium azide, and 1 microgram per milliliter oligomycin. At these concentrations, the test inhibitors had very little or no effect directly on the process of photosynthetic oxygen evolution. The promotion of photoinhibition by inhibitors of oxidative electron transport (antimycin A, sodium azide) and phosphorylation (oligomycin) was much more pronounced than that by inhibitors of glycolysis and tricarboxylic acid cycle (sodium fluoride and sodium malonate, respectively). We suggest that the oxidative electron transport and phosphorylation in mitochondria play an important role in protecting the protoplasts against photoinhibition of photosynthesis. Our results also demonstrate that protoplasts offer an additional experimental system for studies on photoinhibition.  相似文献   

6.
ATPase inhibitor protein, which blocks mitochondrial ATPase activity by forming an enzyme-inhibitor complex, was found to be synthesized as a larger precursor in a cell-free translation system directed by yeast mRNA. Other protein factors, which stabilize latent ATPase by binding to the enzyme-inhibitor complex, were also found to be formed as larger precursors. The precursor of ATPase inhibitor protein was transported into isolated yeast mitochondria and was cleaved to the mature peptide in the mitochondria. Impaired mitochondria lacking phosphorylation activity could not convert the precursor to the mature form. Neither antimycin A nor oligomycin alone exhibited a marked effect on the transport-processing of the precursor by intact mitochondria. However, when antimycin A was added with oligomycin, the transport-processing was markedly inhibited. The processing was also strongly inhibited by an uncoupler, carbonylcyanide p-trifluoro-methoxyphenyl hydrazone. The inhibition by the uncoupler was not relieved by ATP added externally. It is concluded that the transport-processing of precursor proteins requires intact mitochondria with a potential difference across the inner membrane.  相似文献   

7.
氧化磷酸化抑制剂对光滑球拟酵母糖酵解速度的影响   总被引:6,自引:0,他引:6  
研究了不同浓度电子传递链抑制剂 ( 鱼藤酮和抗霉素 A) 和 FOF1-ATPase 抑制剂 ( 寡霉素 ) 对光滑球拟酵母胞内 ATP 水平、葡萄糖消耗速度、糖酵解途径关键酶的影响 . 在培养液中添加 10 mg/L 鱼藤酮和抗霉素 A ,相对于对照组,胞内 ATP 分别下降了 43% 和 27.7% ,使糖酵解关键酶磷酸果糖激酶 (PFK) 的活性分别提高 340% 和 230% ,从而导致葡萄糖消耗速度增加 360% 和 240% ,丙酮酸生成速度提高了 17% 和 8.5%. 改变胞内 ATP 水平并不影响糖酵解途径其他关键酶 HK 、 PK 活性 . 微量的寡霉素 (0.05 mg/L) 可使胞内 ATP 含量下降 64.3% ,当培养液中寡霉素浓度达到 0.4 mg/L 时,细胞不能继续生长,葡萄糖消耗速度和丙酮酸的生成速度却随着寡霉素浓度 ( 小于 0.6 mg/L) 的增加而增加 . 表明氧化磷酸化途径中, ATPase 决定着 ATP 的生成 . 降低胞内 ATP 含量能显著提高 PFK 活性 (r2=0.9971) ,葡萄糖消耗速度 (r2= 0.9967) 以及丙酮酸生产速度 (r2= 0.965) ,葡萄糖消耗速度的增加是糖酵解途径中关键酶 PFK 活性 (r2 = 0.9958) 和 PK 活性 (r2= 0.8706) 增加所导致的 . 这一结果有利于揭示真核微生物细胞中氧化磷酸化与中心代谢途径 ( 酵解 ) 的关系 .  相似文献   

8.
The role of mitochondrial respiration in optimizing photosynthesis was assessed in mesophyll protoplasts of pea ( Pisum sativum L., cv. Arkel) by using low concentrations of oligomycin (an inhibitor of oxidative phosphorylation), antimycin A (inhibits cytochrome pathway of electron transport) and salicylhydroxamic acid (SHAM, an inhibitor of alternative oxidase). All three compounds decreased the rate of photosynthetic O2 evolution in mesophyll protoplasts, but did not affect chloroplast photosynthesis. The inhibition of photosynthesis by these mitochondrial inhibitors was stronger at optimal CO2 (1.0 m M NaHCO3) than that at limiting CO2 (0.1 m M NaHCO3). We conclude that mitochondrial metabolism through both cytochrome and alternative pathways is essential for optimizing photosynthesis at limiting as well as at optimal CO2. The ratios of ATP to ADP in whole protoplast extracts were hardly affected, despite the marked decrease in their photosynthetic rates by SHAM. Similarly, the decrease in the ATP/ADP ratio by oligomycin or antimycin A was more pronounced at limiting CO2 than at optimal CO2. The mitochondrial oxidative electron transport, through both cytochrome and alternative pathways, therefore akppears to be more important than oxidative phosphorylation in optimizing photosynthesis, particularly at limiting CO2 (when ATP demand is expected to be low). Our results also confirm that the alternative pathway has a significant role in contributing to the cellular ATP, when the cytochrome pathway is limited.  相似文献   

9.
In eggs of the echiuroid Urechis unicinctus the respiration rate, which is not altered by fertilization, is inhibited by rotenone, antimycin A and cyanide. The respiration in echiuroid eggs is probably mediated by the mitochondrial respiratory chain. In fertilized eggs, the respiration was inhibited by oligomycin and stimulated by the uncouplers of oxidative phosphorylation 2,4-dinitrophenol and carbonylcyanide p-trifluoromethoxyphenylhydrazone, whereas respiration in unfertilized eggs was insensitive to these compounds. Insemination increased the respiratory rate in eggs in the presence of uncouplers and reduced it in the presence of oligomycin. These findings suggest that the capacity of electron transport in mitochondira is elevated by fertilization but becomes latent on fertilization-induced coupling of respiration with oxidative phosphorylation. Strong stimulation of the respiration in unfertilized eggs was induced by dichlorophenol indophenol, phenazine methosulfate and tetramethyl p-phenylenediamine, suggesting possible sites at which electron transport is regulated in unfertilized eggs. The resulting stimulation of respiration in unfertilized eggs was insensitive to uncouplers and oligomycin, but became sensitive to them after fertilization simultaneously with considerable decrease in its rate. Fertilization-induced coupling of the respiration seemed to reduce the respiratory rate enhanced artificially by these redox compounds.  相似文献   

10.
11.
Several strains of Candida parapsilosis, isolated independently in our laboratory, had their resistance compared to a series of inhibitors which act either at the level of mitochondrial ribosomes (chloramphenicol, erythromycin, paromomycin) or at the level of mitochondrial respiration and oxidative phosphorylation (oligomycin, antimycin A, diuron, carbonylcyanide m-chlorophenylhydrazone). Cells were grown on glycerol media supplemented with one of these inhibitors, and it was demonstrated that the resistance of these yeasts to a large spectrum of antibiotics was due to several features: a resistance to oligomycin was found at the permeation level; the resistance to the other drugs was correlated to the relative insensitivity of cytochrome biosynthesis to the drugs; the cells developed, at the same time, two types of alternative pathways: the one branched at the ubiquinone level which drove electrons from Krebs cycle substrates to oxygen, and the other, antimycin A-insensitive but inhibited by amytal, salicylhydroxamic acid and high cyanide concentrations. This secondary mitochondrial pathway, driving reducing equivalents from cytoplasmic NADH to cytochrome c and then to cytochrome aa3 or to alternate oxidase, allowed the growth of Candida parapsilosis on a non fermentescible medium, supplemented with these drugs.  相似文献   

12.
Isolated pig heart mitochondria were found to form phosphocreatine continuously at the rate of 12.5 +/- 1.8 nmol per min per mg of the mitochondrial protein in the respiration medium without externally added adenine nucleotides, and its formation rate showed a concentration dependency with respect to creatine and phosphate. The synthesis of phosphocreatine was completely inhibited by antimycin, FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone), and atractyloside. However, oligomycin had no effect on the rate of phosphocreatine formation. These results are discussed in terms of a model that heart mitochondrial creatine kinase is functionally coupled to the oxidative phosphorylating system via the action of the adenine nucleotide translocase.  相似文献   

13.
Salivary glands from third instar larvae of Drosophila melanogaster were incubated in vitro with various substances affecting oxidative phosphorylation. After an incubation time of 1–3 h changes in puff size and in cellular ATP level were registered. 10?6 M trinactin, 10?5 or 10?4 M oligomycin both induce puff 63BC together with some other puffs and reduce the cellular ATP level by about 80–90%. The trinactin-dependent puff induction can be inhibited, if the medium is supplemented with 10?3 M ATP or 10?3 M ITP or 10?6 M antimycin or 10?2 M KCN. The effect of exogenous ATP is prevented by adding 10?6 M oligomycin to the incubation mixture; 10?6 M oligomycin alone, however, has no inductive effect on 63BC. The presence of exogenous ITP, furthermore, prevents the ATP level from being reduced by trinactin. 10?4 M atractyloside lowers the ATP level by about 75 %, whereas a puff induction cannot be observed. The same is true for various concentrations of KCN. It is concluded that ATP itself is not involved directly in the regulation of puff activity but that it acts on a phosphorylating reaction that can be inhibited by oligomycin.  相似文献   

14.
Alkaline inorganic pyrophosphatase and Mg-ATPase are localized within the mitoplast of maize seeding mitochondria. NaF inhibited the PPase activity, whereas oligomycin and dicyclohexylcarbodiimide inhibited the Mg-ATPase activity. The mitoplast preparation synthesized PPi from Pi under conditions excluding hydrolysis of endogenous ATP. PPi synthesis was inhibited by ADP, antimycin A, NaCN and 2,4- dinitrophenol but not by oligomycin. It is suggested that PPi synthesis in the maize seedling mitochondria proceeds at the expense of the energy of electron transport chain and is independent of the ATP synthesis.  相似文献   

15.
Yeast submitochondrial particles, in a Pi- and NADH-dependent reaction, produced low concentrations of free ATP in the absence of added ADP. This formation of free ATP, as measured by the luciferin-luciferase method, was strongly stimulated by oligomycin. For maximal stimulation, oligomycin was to be added not earlier than 5-10 min after the addition of NADH. Upon addition of antimycin or FCCP the system was completely inhibited. The amount of free ATP formed corresponded to one-third of the amount of bound ATP in submitochondrial particles. The stimulatory effect of oligomycin disappeared if the submitochondrial particles were spun down after oligomycin stimulation and then resuspended in the reaction medium, whereas submitochondrial particles with no oligomycin added initially were stimulated by oligomycin after the same procedure. A different picture emerged with addition of ADP. If the submitochondrial particles were preenergized with NADH in the presence of oligomycin before the addition of ADP the formation of free ATP upon subsequent addition of ADP was inhibited by oligomycin. In the presence of oligomycin, but lacking preenergization with NADH, a stimulation of free ATP formation was achieved with added ADP. A possible explanation for the stimulating effect of oligomycin on ATP formation in the absence of added ADP is that it enhances the release of bound ATP in an energy-requiring process. The release of only about one-third of the bound ATP could indicate that one of three nucleotide-binding subunits involved in the mechanism of ATP formation by ATP synthase is in a state suitable for such an energy-dependent release of ATP.  相似文献   

16.
Shell JR  Lawrence DS 《Biochemistry》2012,51(11):2258-2264
The mitochondrial cAMP-dependent protein kinase (PKA) is activatable in a cAMP-independent fashion. The regulatory (R) subunits of the PKA holoenzyme (R(2)C(2)), but not the catalytic (C) subunits, suffer proteolysis upon exposure of bovine heart mitochondria to digitonin, Ca(2+), and a myriad of electron transport inhibitors. Selective loss of both the RI- and RII-type subunits was demonstrated via Western blot analysis, and activation of the C subunit was revealed by phosphorylation of a validated PKA peptide substrate. Selective proteolysis transpires in a calpain-dependent fashion as demonstrated by exposure of the R and C subunits of PKA to calpain and by attenuation of R and C subunit proteolysis in the presence of calpain inhibitor I. By contrast, exposure of mitochondria to cAMP fails to promote R subunit degradation, although it does result in enhanced C subunit catalytic activity. Treatment of mitochondria with electron transport chain inhibitors rotenone, antimycin A, sodium azide, and oligomycin, as well as an uncoupler of oxidative phosphorylation, also elicits enhanced C subunit activity. These results are consistent with the notion that signals, originating from cAMP-independent sources, elicit enhanced mitochondrial PKA activity.  相似文献   

17.
The influence of a number of inhibitors affecting respiration, oxidative phosphorylation, cAMP-phosphodiesterase and of the antioxidant 1,4-dithiothreitol on growth and photoinduced conidiation ofTrichoderma viride were investigated. In all cases, growth and conidiation were influenced to a different extent. Among the first group of compounds, antimycin A was the most potent inhibitor of conidiation while it influenced growth much less. A similar effect was obtained with 2,4-dinitrophenol and 1,4-dithiothreitol. On the other hand, 3-isobutyl-1-methylxanthine (inhibitor of phosphodiesterase) greatly stimulated the conidiation induced by light without affecting growth. It is concluded that the redox reactions represent a vital component of the differentiation pathway and that cAMP may play a regulatory role in this process.  相似文献   

18.
The Ca2+ content of hepatocytes from juvenile male rats (80-110 g) or adult female rats (135-155 g) displayed a biphasic dose-response curve to epinephrine. Low concentrations (less than or equal to 10(-7) M) caused efflux of Ca2+ from the cells, while higher concentrations (10(-6) M and 10(-5) M) induced net Ca2+ uptake which correlated with a large beta 2-adrenergic-mediated increase in cAMP (Morgan, N. G., Blackmore, P. F., and Exton, J. H. (1983) J. Biol. Chem. 258, 5103-5109). Calcium accumulation could be induced in cells from older male rats (180-230 g) by combining a Ca2+-mobilizing hormone with either exogenous cAMP or glucagon (10(-8) M). Readdition of Ca2+ in the presence of glucagon to cells treated with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid also resulted in enhanced Ca2+ accumulation compared with controls. Addition of vasopressin plus glucagon to the medium perfusing male rat livers also led to cell Ca2+ accumulation, as evidenced by uptake of Ca2+ from the perfusate. Incubation of hepatocytes with antimycin A, oligomycin, and carbonyl cyanide m-chlorophenylhydrazone prevented net Ca2+ accumulation suggesting that mitochondria play a role in the uptake response. This was confirmed by isolation of mitochondria from cells incubated under conditions which promote Ca2+ accumulation. Within 5 min of incubation, the Ca2+ content of these mitochondria was increased 2-fold relative to controls, an effect which was inhibited by oligomycin. These studies demonstrate that a rise in hepatic cAMP can reverse hormonally induced Ca2+ mobilization and point to a major role for the mitochondria in this effect.  相似文献   

19.
《Autophagy》2013,9(11):1897-1899
It was postulated that mitophagy removes damaged mitochondria, which is critical for proper cellular homeostasis; dysfunctional mitochondria can generate excess reactive oxygen species (ROS) that can further damage the organelle as well as other cellular components. Although proper cell physiology requires the maintenance of a healthy pool of mitochondria, little is known about the mechanism underlying the recognition and selection of damaged organelles. We investigated the cellular fate of mitochondria damaged by the action of oxidative phosphorylation inhibitors (antimycin A, myxothiazol, KCN, oligomycin, CCCP). Only antimycin A and KCN effectively induce nonspecific autophagy, but not mitophagy, in a wild-type strain; however, low or no autophagic activity was measured in strains deficient in genes, including ATG32, ATG11 and BCK1, encoding proteins that are involved in mitophagy. These results provide evidence for a major role of specific mitophagy factors in the control of a general autophagic cellular response induced by mitochondrial alteration. Moreover, significant reduction of cytochrome b, one of the components of the respiratory chain, could be the first signal of this induction pathway.  相似文献   

20.
Yeast submitochondrial particles, in a Pi- and NADH-dependent reaction, produced low concentrations of free ATP in the absence of added ADP. This formation of free ATP, as measured by the luciferin-luciferase method, was strongly stimulated by oligomycin. For maximal stimulation, oligomycin was to be added not earlier than 5–10 min after the addition of NADH. Upon addition of antimycin or FCCP the system was completely inhibited. The amount of free ATP formed corresponded to one-third of the amount of bound ATP in submitochondrial particles. The stimulatory effect of oligomycin disappeared if the submitochondrial particles were spun down after oligomycin stimulation and then resuspended in the reaction medium, whereas submitochondrial particles with no oligomycin added initially were stimulated by oligomycin after the same procedure. A different picture emerged with addition of ADP. If the submitochondrial particles were preenergized with NADH in the presence of oligomycin before the addition of ADP the formation of free ATP upon subsequent addition of ADP was inhibited by oligomycin. In the presence of oligomycin, but lacking preenergization with NADH, a stimulation of free ATP formation was achieved with added ADP. A possible explanation for the stimulating effect of oligomycin on ATP formation in the absence of added ADP is that it enhances the release of bound ATP in an energy-requiring process. The release of only about one-third of the bound ATP could indicate that one of three nucleotide-binding subunits involved in the mechanism of ATP formation by ATP synthase is in a state suitable for such an energy-dependent release of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号