首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myxococcus xanthus glides over solid surfaces without the use of flagella, dependent upon two large sets of adventurous (A) and social (S) genes, using two different mechanisms of gliding motility. Myxococcus xanthus A-S- double mutants form non-motile colonies lacking migratory cells at their edges. We have isolated 115 independent mutants of M. xanthus with insertions of transposon magellan-4 in potential A genes by screening for insertions that reduce the motility of a mutant S- parental strain. These insertions are found not only in the three loci known to be required for A motility, mglBA, cglB, and aglU, but also in 30 new genes. Six of these new genes encode different homologues of the TolR, TolB, and TolQ transport proteins, suggesting that adventurous motility is dependent on biopolymer transport. Other insertions which affect both A and S motility suggest that both systems share common energy and cell wall determinants. Because the spectrum of magellan-4 insertions in M. xanthus is extraordinarily broad, transposon mutagenesis with this eukaryotic genetic element permits the rapid genetic analysis of large sets of genes that contribute to a complex microbial behaviors such as A motility.  相似文献   

2.
3.
The mglA gene encodes a 22 kDa GTPase that is critical for single-cell (A) gliding, type IV pili-mediated (S) gliding and development of Myxococcus xanthus. To identify components that interact with MglA to control these processes, second-site mutations that restore movement to non-motile mglA mutants were sought. An allele-specific extragenic suppressor of mglA8, named mas815 (mglA8 suppressor 15), was obtained. mas815 does not bypass the requirement for MglA, yet it restores type IV pili-mediated motility and starvation-induced development. Single-cell (A) motility is not restored. The suppressing mutation maps to the 3' end of a gene, masK, in an operon immediately upstream of the mglBA operon. masK encodes a protein of the STY kinase family. When the masK gene was used as bait against a library carrying M. xanthus DNA in the yeast two-hybrid system, eight positive, independent clones containing fusions of mglA to GAL4 were obtained, thus confirming the interaction between MglA and MasK. MasK, expressed in Escherichia coli, was shown to phosphorylate at a tyrosine residue(s). The gain-of-function in the masK815 mutant was correlated with increased production of extracellular fibrils, which are required for adhesion, cell-cell contact and sensing phosphatidylethanolamine chemoattractants. These data suggest that the interaction between MasK and MglA is an essential part of a signal transduction pathway controlling motility and development.  相似文献   

4.
Myxococcus xanthus cells aggregate and develop into multicellular fruiting bodies in response to starvation. A new M. xanthus locus, designated dif for defective in fruiting, was identified by the characterization of a mutant defective in fruiting body formation. Molecular cloning, DNA sequencing and sequence analysis indicate that the dif locus encodes a new set of chemotaxis homologues of the bacterial chemotaxis proteins MCPs (methyl-accepting chemotaxis proteins), CheW, CheY and CheA. The dif genes are distinct genetically and functionally from the previously identified M. xanthus frz chemotaxis genes, suggesting that multiple chemotaxis-like systems are required for the developmental process of M. xanthus fruiting body formation. Genetic analysis and phenotypical characterization indicate that the M. xanthus dif locus is required for social (S) motility. This is the first report of a M. xanthus chemotaxis-like signal transduction pathway that could regulate or co-ordinate the movement of M. xanthus cells to bring about S motility.  相似文献   

5.
Myxococcus xanthus is a gram-negative soil bacterium that initiates a complex developmental program in response to starvation. A transposon insertion (Tn5-lac omega109) mutant with developmental deficiencies was isolated and characterized in this study. A strain containing this insertion mutation in an otherwise wild-type background showed delayed developmental aggregation for about 12 h and sporulated at 1-2% of the wild-type level. Tn5-lac omega109 was found to have disrupted the M. xanthus wbgB gene, which is located 2.1 kb downstream of the M. xanthus lipopolysacharide (LPS) O-antigen biosynthesis genes wzm wzt wbgA. The deduced polypeptide sequence of WbgB shares significant similarity with bacterial glycosyltransferases including M. xanthus WbgA. The wbgB::Tn5-lac omega109 mutant was found to be defective in LPS O-antigen synthesis by immunochemical analysis. Further mutational analysis indicated that the defects of the wbgB::Tn5-lac omega109 mutant were not the result of polar effects on downstream genes. Various motility assays demonstrated that the Tn5-lac omega109 mutation affected both social (S) and adventurous (A) gliding motility of M. xanthus cells. The pleiotrophic effects of wbgB mutations indicate the importance of LPS O-antigen biosynthesis for various cellular functions in M. xanthus.  相似文献   

6.
Social gliding motility in Myxococcus xanthus depends on the presence of Type IV pili. To begin to examine the role of pili in social motility, 17 mutants were identified which had lost social motility, but still expressed pili. Four of these mutants carry point mutations which mapped to a locus upstream of the recently identified pilS , pilR , and pilA genes. Sequencing of this locus revealed a gene with homology to pilT from Pseudomonas aeruginosa . Sequencing of the four point mutations revealed that they occurred within the M. xanthus pilT locus. A markerless deletion within M. xanthus pilT , similar to the four point mutations, disrupted social gliding behaviour but did not interfere with pilus formation or pilus-dependent cell–cell agglutination. Using time-lapse videomicroscopy, residual social motility was observed in dsp strains (known to be deficient in fibril but not pilus production); this was not observed in a Δ pilT dsp double mutant. Two genes flanking pilT  were also sequenced, and found to have homology to pilB and pilC from P. aeruginosa . Markerless deletions within these genes caused both pilus and social-motility defects. These results indicate that M. xanthus pilB and pilC are required for pilus biogenesis, while pilT is required for assembled pili to play their role in social motility. Thus, pilB , pilT , pilC , pilS , pilR and pilA form a contiguous cluster of pil genes required for social motility.  相似文献   

7.
Protein S is an abundant spore coat protein produced during fruiting body formation (development) of the bacterium Myxococcus xanthus. We have cloned the DNA which codes for protein S and have found that this DNA hybridizes to three protein S RNA species from developmental cells but does not hybridize to RNA from vegetative cells. The half-life of protein S RNA was found to be unusually long, about 38 minutes, which, at least in part, accounts for the high level of protein S synthesis observed during development. Hybridization of restriction fragments from cloned M. xanthus DNA to the developmental RNAs enabled us to show that M. xanthus has two directly repeated genes for protein S (gene 1 and gene 2) which are separated by about 10(3) base-pairs on the bacterial chromosome. To study the expression of the protein S genes in M. xanthus, eight M. xanthus strains were isolated with Tn5 insertions at various positions in the DNA which codes for protein S. The strains which contained insertions in gene 1 or between gene 1 and gene 2 synthesized all three protein S RNA species and exhibited normal levels of protein S on spores. In contrast, M. xanthus strains exhibited normal levels of protein S on spores. In contrast, M. xanthus strains with insertions in gene 2 had no detectable protein S on spores and lacked protein S RNA. Thus, gene 2 is responsible for most if not all of the production of protein S during M. xanthus development. M. xanthus strains containing insertions in gene 1, gene 2 or both genes, were found to aggregate and sporulate normally even though strains bearing insertions in gene 2 contained no detectable protein S. We examined the expression of gene 1 in more detail by constructing a fusion between the lacZ gene of Escherichia coli and the N-terminal portion of protein S gene 1 of M. xanthus. The expression of beta-galactosidase activity in an M. xanthus strain containing the gene fusion was shown to be under developmental control. This result suggests that gene 1 is also expressed during development although apparently at a much lower level than gene 2.  相似文献   

8.
Bellenger K  Ma X  Shi W  Yang Z 《Journal of bacteriology》2002,184(20):5654-5660
In bacteria with multiple sets of chemotaxis genes, the deletion of homologous genes or even different genes in the same operon can result in disparate phenotypes. Myxococcus xanthus is a bacterium with multiple sets of chemotaxis genes and/or homologues. It was shown previously that difA and difE, encoding homologues of the methyl-accepting chemoreceptor protein (MCP) and the CheA kinase, respectively, are required for M. xanthus social gliding (S) motility and development. Both difA and difE mutants were also defective in the biogenesis of the cell surface appendages known as extracellular matrix fibrils. In this study, we investigated the roles of the CheW homologue encoded by difC, a gene at the same locus as difA and difE. We showed that difC mutations resulted in defects in M. xanthus developmental aggregation, sporulation, and S motility. We demonstrated that difC is indispensable for wild-type cellular cohesion and fibril biogenesis but not for pilus production. We further illustrated the ectopic complementation of a difC in-frame deletion by a wild-type difC. The identical phenotypes of difA, difC, and difE mutants are consistent and supportive of the hypothesis that the Dif chemotaxis homologues constitute a chemotaxis-like signal transduction pathway that regulates M. xanthus fibril biogenesis and S motility.  相似文献   

9.
10.
Myxococcus xanthus social (S) gliding motility has been previously reported by us to require the chemotaxis homologues encoded by the dif genes. In addition, two cell surface structures, type IV pili and extracellular matrix fibrils, are also critical to M. xanthus S motility. We have demonstrated here that M. xanthus dif genes are required for the biogenesis of fibrils but not for that of type IV pili. Furthermore, the developmental defects of dif mutants can be partially rescued by the addition of isolated fibril materials. Along with the chemotaxis genes of various swarming bacteria and the pilGHIJ genes of the twitching bacterium Pseudomonas aeruginosa, the M. xanthus dif genes belong to a unique class of bacterial chemotaxis genes or homologues implicated in the biogenesis of structures required for bacterial surface locomotion. Genetic studies indicate that the dif genes are linked to the M. xanthus dsp region, a locus known to be crucial for M. xanthus fibril biogenesis and S gliding.  相似文献   

11.
The extracellular matrix fibrils of Myxococcus xanthus are essential for the social lifestyle of this unusual bacterium. These fibrils form networks linking or encasing cells and are tightly correlated with cellular cohesion, development, and social (S) gliding motility. Previous studies identified a set of bacterial chemotaxis homologs encoded by the dif locus. It was determined that difA, difC, and difE, encoding respective homologs of a methyl-accepting chemotaxis protein, CheW, and CheA, are required for fibril production and therefore S motility and development. Here we report the studies of three additional genes residing at the dif locus, difB, difD, and difG. difD and difG encode homologs of chemotaxis proteins CheY and CheC, respectively. difB encodes a positively charged protein with limited homology at its N terminus to conserved bacterial proteins with unknown functions. Unlike the previously characterized dif genes, none of these three newly studied dif genes are essential for fibril production, S motility, or development. The difB mutant showed no obvious defects in any of the processes examined. In contrast, the difD and the difG mutants were observed to overproduce fibril polysaccharides in comparison with production by the wild type. The observation that DifD and DifG negatively regulate fibril polysaccharide production strengthens our hypothesis that the M. xanthus dif genes define a chemotaxis-like signal transduction pathway which regulates fibril biogenesis. To our knowledge, this is the first report of functional studies of a CheC homolog in proteobacteria. In addition, during this study, we slightly modified previously developed assays to easily quantify fibril polysaccharide production in M. xanthus.  相似文献   

12.
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when nutrients are limiting. Defective fruiting-body formation and sporulation result from mutations in the sasA locus, which encodes the wzm wzt wbgA (formerly rfbABC ) lipopolysaccharide (LPS) O-antigen biosynthesis genes. Mutants carrying these same sasA mutations are defective in social motility and form small glossy colonies. We report here that the developmental and motility phenotypes of four mutants each containing different Tn 5 insertions in LPS O-antigen biosynthesis genes are similar to those of the original sasA locus mutants. All of the LPS O-antigen mutants tested exhibited defective developmental aggregation and sporulated at only 0.02–15% of the wild-type level. In addition, all of the LPS O-antigen mutants were determined by genetic analyses to be wild type for adventurous motility and defective in social motility, indicating that the LPS O-antigen is necessary for normal development and social motility. The two previously identified cell-surface components required for social motility, type IV pili and the protein-associated polysaccharide material termed fibrils, were detected on the surfaces of all of the LPS O-antigen mutants. This indicates that LPS O-antigen is a third cell-surface component required for social motility.  相似文献   

13.
Myxococcus xanthus, a gram-negative soil bacterium, responds to amino acid starvation by entering a process of multicellular development which culminates in the assembly of spore-filled fruiting bodies. Previous studies utilizing developmental inhibitors (such as methionine, lysine, or threonine) have revealed important clues about the mechanisms involved in fruiting body formation. We used Biolog phenotype microarrays to screen 384 chemicals for complete inhibition of fruiting body development in M. xanthus. Here, we report the identification of a novel inhibitor of fruiting body formation and sporulation, beta-d-allose. beta-d-Allose, a rare sugar, is a member of the aldohexose family and a C3 epimer of glucose. Our studies show that beta-d-allose does not affect cell growth, viability, agglutination, or motility. However, beta-galactosidase reporters demonstrate that genes activated between 4 and 14 h of development show significantly lower expression levels in the presence of beta-d-allose. Furthermore, inhibition of fruiting body formation occurs only when beta-d-allose is added to submerged cultures before 12 h of development. In competition studies, high concentrations of galactose and xylose antagonize the nonfruiting response to beta-d-allose, while glucose is capable of partial antagonism. Finally, a magellan-4 transposon mutagenesis screen identified glcK, a putative glucokinase gene, required for beta-d-allose-mediated inhibition of fruiting body formation. Subsequent glucokinase activity assays of the glcK mutant further supported the role of this protein in glucose phosphorylation.  相似文献   

14.
Myxococcus xanthus moves on solid surfaces by using two gliding motility systems, A motility for individual-cell movement and S motility for coordinated group movements. The frz genes encode chemotaxis homologues that control the cellular reversal frequency of both motility systems. One of the components of the core Frz signal transduction pathway, FrzE, is homologous to both CheA and CheY from the enteric bacteria and is therefore a novel CheA-CheY fusion protein. In this study, we investigated the role of this fusion protein, in particular, the CheY domain (FrzECheY). FrzECheY retains all of the highly conserved residues of the CheY superfamily of response regulators, including Asp709, analogous to phosphoaccepting Asp57 of Escherichia coli CheY. While in-frame deletion of the entire frzE gene caused both motility systems to show a hyporeversal phenotype, in-frame deletion of the FrzECheY domain resulted in divergent phenotypes for the two motility systems: hyperreversals of the A-motility system and hyporeversals of the S-motility system. To further investigate the role of FrzECheY in A and S motility, point mutations were constructed such that the putative phosphoaccepting residue, Asp709, was changed from D to A (and was therefore never subject to phosphorylation) or E (possibly mimicking constitutive phosphorylation). The D709A mutant showed hyperreversals for both motilities, while the D709E mutant showed hyperreversals for A motility and hyporeversal for S motility. These results show that the FrzECheY domain plays a critical signaling role in coordinating A and S motility. On the basis of the phenotypic analyses of the frzE mutants generated in this study, a model is proposed for the divergent signal transduction through FrzE in controlling and coordinating A and S motility in M. xanthus.  相似文献   

15.
16.
Cdc2 and the Regulation of Mitosis: Six Interacting Mcs Genes   总被引:10,自引:2,他引:8       下载免费PDF全文
L. Molz  R. Booher  P. Young    D. Beach 《Genetics》1989,122(4):773-782
A cdc2-3w weel-50 double mutant of fission yeast displays a temperature-sensitive lethal phenotype that is associated with gross abnormalities of chromosome segregation and has been termed mitotic catastrophe. In order to identify new genetic elements that might interact with the cdc2 protein kinase in the regulation of mitosis, we have isolated revertants of the lethal double mutant. The suppressor mutations define six mcs genes (mcs: mitotic catastrophe suppressor) that are not allelic to any of the following mitotic control genes: cdc2, wee 1, cdc13, cdc25, suc1 or nim1. Each mcs mutation is recessive with respect to wild-type in its ability to suppress mitotic catastrophe. None confer a lethal phenotype as a single mutant but few of the mutants are expected to be nulls. A diverse range of genetic interactions between the mcs mutants and other mitotic regulators were uncovered, including the following examples. First, mcs2 cdc2w or mcs6 cdc2w double mutants display a cell cycle defect dependent on the specific wee allele of cdc2. Second, both mcs1 cdc25-22 or mcs4 cdc25-22 double mutants are nonconditionally lethal, even at a temperature normally permissive for cdc25-22. Finally, the characteristic suppression of the cdc25 phenotype by a loss-of-function wee1 mutation is reversed in a mcs3 mutant background. The mcs genes define new mitotic elements that might be activators or substrates of the cdc2 protein kinase.  相似文献   

17.
18.
19.
Myxococcus xanthus cells move on a solid surface by gliding motility. Several genes required for gliding motility have been identified, including those of the A- and S-motility systems as well as the mgl and frz genes. However, the cellular defects in gliding movement in many of these mutants were unknown. We conducted quantitative, high-resolution single-cell motility assays and found that mutants defective in mglAB or in cglB, an A-motility gene, reversed the direction of gliding at frequencies which were more than 1 order of magnitude higher than that of wild type cells (2.9 min-1 for DeltamglAB mutants and 2.7 min-1 for cglB mutants, compared to 0.17 min-1 for wild-type cells). The average gliding speed of DeltamglAB mutant cells was 40% of that of wild-type cells (on average 1.9 micrometers/min for DeltamglAB mutants, compared to 4.4 micrometers/min for wild-type cells). The mglA-dependent reversals and gliding speeds were dependent on the level of intracellular MglA protein: mglB mutant cells, which contain only 15 to 20% of the wild-type level of MglA protein, glided with an average reversal frequency of about 1.8 min-1 and an average speed of 2.6 micrometers/min. These values range between those exhibited by wild-type cells and by DeltamglAB mutant cells. Epistasis analysis of frz mutants, which are defective in aggregation and in single-cell reversals, showed that a frzD mutation, but not a frzE mutation, partially suppressed the mglA phenotype. In contrast to mgl mutants, cglB mutant cells were able to move with wild-type speeds only when in close proximity to each other. However, under those conditions, these mutant cells were found to glide less often with those speeds. By analyzing double mutants, the high reversing movements and gliding speeds of cglB cells were found to be strictly dependent on type IV pili, encoded by S-motility genes, whereas the high-reversal pattern of mglAB cells was only partially reduced by a pilR mutation. These results suggest that the MglA protein is required for both control of reversal frequency and gliding speed and that in the absence of A motility, type IV pilus-dependent cell movement includes reversals at high frequency. Furthermore, mglAB mutants behave as if they were severely defective in A motility but only partially defective in S motility.  相似文献   

20.
Gliding motility in the developmental bacterium Myxococcus xanthus involves two genetically distinct motility systems, designated adventurous (A) and social (S). Directed motility responses, which facilitate both vegetative swarming and developmental aggregation, additionally require the 'frizzy' (Frz) signal transduction pathway. In this study, we have analysed a new gene (frzS), which is positioned upstream of the frzA-F operon. Insertion mutations in frzS caused both vegetative spreading and developmental defects, including 'frizzy' aggregates in the FB strain background. The 'frizzy' phenotype was previously considered to result only from defective directed motility responses. However, deletion of the frzS gene in an A-S+ motility background demonstrated that FrzS is a new component of the S-motility system, as the A-frzS double mutant was non-spreading (A-S-). Compared with known S-motility mutants, the frzS mutants appear similar to pilT mutants, in that both produce type IV pili, extracellular fibrils and lipopolysaccharide (LPS) O-antigen, and both agglutinate rapidly in a cohesion assay. The FrzS protein has an unusual domain composition for a bacterial protein. The N-terminal domain shows similarity to the receiver domains of the two-component response regulator proteins. The C-terminal domain is composed of up to 38 heptad repeats (a b c d e f g)38, in which residues at positions a and d are predominantly hydrophobic, whereas residues at positions e and g are predominantly charged. This periodic disposition of specific residues suggests that the domain forms a long coiled-coil structure, similar to those found in the alpha-fibrous proteins, such as myosin. Overexpression of this domain in Escherichia coli resulted in the formation of an unusual striated protein lattice that filled the cells. We speculate on the role that this novel protein could play in gliding motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号