首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Domains in the XPA protein important in its role as a processivity factor   总被引:2,自引:0,他引:2  
XPA is a protein essential for nucleotide excision repair (NER) where it is thought to function in damage recognition/verification. We have proposed an additional role, that of a processivity factor, conferring a processive mechanism of action on XPF and XPG, the endonucleases, involved in NER. The present study was undertaken to examine the domain(s) in the XPA gene that are important for the ability of the XPA protein to function as a processivity factor. Using site-directed mutagenesis, mutations were created in several of the exons of XPA and mutant XPA proteins produced. The results showed that the DNA binding domain of XPA is critical for its ability to act as a processivity factor. Mutations in both the zinc finger motif and the large basic cleft in this domain eliminated the ability of XPA to confer a processive mechanism of action on the endonucleases involved in NER.  相似文献   

2.
The Xeroderma Pigmentosum A (XPA) protein is involved in the DNA damage recognition and repair complex formation steps of nucleotide excision repair (NER), and has been shown to preferentially bind to various forms of DNA damage including bulky lesions. DNA interstrand crosslinks are of particular interest as a form of DNA damage, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery, and mitomycin C (MMC) is one of several useful cancer chemotherapy drugs that induce these lesions. Purified XPA and the minimal DNA-binding domain of XPA are both fully capable of preferentially binding to MMC-DNA interstrand crosslinks in the absence of other proteins from the NER complex. Circular dichroism (CD) and gel shift assays were used to investigate XPA-DNA binding and to assess changes in secondary structure induced as a consequence of the interaction of XPA with model MMC-crosslinked and unmodified DNAs. These studies revealed that while XPA demonstrates only a modest increase in affinity for adducted DNA, it adopts a different conformation when bound to MMC-damaged DNA than when bound to undamaged DNA. This change in conformation may be more important in recruiting other proteins into a competent NER complex at damaged sites than preferential binding per se. Arsenic had little effect on XPA binding even at toxic concentrations, whereas cadmium reduced XPA binding to DNA to 10-15% that of Zn-XPA, and zinc addition could only partially restore activity. In addition, there was little or no change in conformation when Cd-XPA bound MMC-crosslinked DNA even though it demonstrated preferential binding, which may contribute to the mechanism by which cadmium can act as a co-mutagen and co-carcinogen.  相似文献   

3.
The process by which DNA-interactive proteins locate specific sequences or target sites on cellular DNA within Escherichia coli is a poorly understood phenomenon. In this study, we present the first direct in vivo analysis of the interaction of a DNA repair enzyme, T4 endonuclease V, and its substrate, pyrimidine dimer-containing plasmid DNA, within UV-irradiated E. coli. A pyrimidine dimer represents a small target site within large domains of DNA. There are two possible paradigms by which endonuclease V could locate these small target sites: a processive mechanism in which the enzyme "scans" DNA for dimer sites or a distributive process in which dimers are located by random three-dimensional diffusion. In order to discriminate between these two possibilities in E. coli, an in vivo DNA repair assay was developed to study the kinetics of plasmid DNA repair and the dimer frequency (i.e. the number of dimer sites on a given plasmid molecule) in plasmid DNA as a function of time during repair. Our results demonstrate that the overall process of plasmid DNA repair initiated by T4 endonuclease V (expressed from a recombinant plasmid within repair-deficient E. coli) occurs by a processive mechanism. Furthermore, by reducing the temperature of the repair incubation, the endonuclease V-catalyzed incision step has been effectively decoupled from the subsequent steps including repair patch synthesis, ligation, and supercoiling. By this manipulation, it was determined that the overall processive mechanism is composed of two phases: a rapid processive endonuclease V-catalyzed incision reaction, followed by a slower processive mechanism, the ultimate product of which is the dimer-free supercoiled plasmid molecule.  相似文献   

4.
The influence of nucleosome structure on the activity of 2 chromatin-associated DNA endonucleases, pIs 4.6 and 7.6, from normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells was examined on DNA containing either psoralen monoadducts or cross-links. As substrate a reconstituted nucleosomal system was utilized consisting of a plasmid DNA and either core (H2A, H2B, H3, H4), or total (core plus H1) histones from normal or XPA cells. Both non-nucleosomal and nucleosomal DNA were treated with 8-methoxypsoralen (8-MOP) plus long-wavelength ultraviolet radiation (UVA), which produces monoadducts and DNA interstrand cross-links, and angelicin plus UVA, which produces monoadducts. Both normal endonucleases were over 2-fold more active on both types of psoralen-plus-UVA-damaged core nucleosomal DNA than on damaged non-nucleosomal DNA. Addition of histone H1 to the system reduced but did not abolish this increase. By contrast, neither XPA endonuclease showed any increase on psoralen-treated nucleosomal DNA, with or without histone H1. Mixing the normal with the XPA endonucleases led to complementation of the XPA defect. These results indicate that interaction of these endonucleases with chromatin is of critical importance and that it is at this level that a defect exists in XPA endonucleases.  相似文献   

5.
Mustra DJ  Warren AJ  Hamilton JW 《Biochemistry》2001,40(24):7158-7164
Nucleotide excision repair (NER) is an important cellular mechanism that removes radiation-induced and chemically induced damage from DNA. The XPA protein is involved in the damage recognition step of NER and appears to function by binding damaged DNA and recruiting other proteins to the site. It may also play a role in subsequent steps of NER through interaction with other repair proteins. Interstrand cross-links are of particular interest, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery. Using 14 and 25 bp duplex oligonucleotides containing a defined, well-characterized single mitomycin C (MMC)-DNA interstrand cross-link, we have shown through gel shift analysis that both XPA and a minimal DNA binding domain of XPA (XPA-MF122) preferentially bind to MMC-cross-linked DNA with a greater specificity and a higher affinity (>2-fold) than to the same undamaged DNA sequence. This preferential binding to MMC-cross-linked DNA occurs in the absence of other proteins from the NER complex. Differences in binding affinity and specificity were observed among the different protein-DNA combinations that were both protein and DNA specific. Defining XPA-MMC-DNA interactions may aid in elucidating the mechanism by which DNA cross-links and other forms of DNA damage are recognized and repaired by the NER machinery in eukaryotic cells.  相似文献   

6.
XPA, XPC-hHR23B, RPA, and TFIIH all are the damage recognition proteins essential for the early stage of nucleotide excision repair. Nonetheless, it is not clear how these proteins work together at the damaged DNA site. To get insight into the molecular mechanism of damage recognition, we carried out a comprehensive analysis on the interaction between damage recognition proteins and their assembly on damaged DNA. XPC physically interacted with XPA, but failed to stabilize the XPA-damaged DNA complex. Instead, XPC-hHR23B was effectively displaced from the damaged DNA by the combined action of RPA and XPA. A mutant RPA lacking the XPA interaction domain failed to displace XPC-hHR23B from damaged DNA, suggesting that XPA and RPA cooperate with each other to destabilize the XPC-hHR23B-damaged DNA complex. Interestingly, the presence of hHR23B significantly increased RPA/XPA-mediated displacement of XPC from damaged DNA, suggesting that hHR23B may modulate the binding of XPC to damaged DNA. Together, our results suggest that damage recognition occurs in a multistep process such that XPC-hHR23B initiates damage recognition, which was replaced by combined action of XPA and RPA. XPA and RPA, once forming a complex at the damage site, would likely work with TFIIH, XPG, and ERCC1-XPF for dual incision.  相似文献   

7.
Nucleotide excision repair (NER) acts on a variety of DNA lesions, including damage induced by many chemotherapeutic drugs. Cancer therapy with such drugs might be improved by reducing the NER capacity of tumors. It is not known, however to what extent any individual NER protein is rate-limiting for any step of the repair reaction. We studied sensitivity to UV radiation and repair of DNA damage with regard to XPA, one of the core factors in the NER incision complex. About 150,000-200,000 molecules of XPA protein are present in NER proficient human cell lines, and no XPA protein in the XP-A cell line XP12RO. Transfected XP12RO cell lines expressing 50,000 or more XPA molecules/cell showed UV resistance similar to normal cells. Suppression of XPA protein to approximately 10,000 molecules/cell in a Tet-regulatable system modestly but significantly increased sensitivity to UV irradiation. No removal of cyclobutane pyrimidine dimers was detected in the SV40 immortalized cell lines tested. Repair proficient WI38-VA fibroblasts and transfected XP-A cells expressing 150,000 molecules of XPA/cell removed (6-4) photoproducts from the genome with a half-life of 1h. Cells in which XPA protein was reduced to about 10,000 molecules/cell removed (6-4) photoproducts more slowly, with a half-life of 3h. A reduced rate of repair of (6-4) photoproducts thus results in increased cellular sensitivity towards UV irradiation. These data indicate that XPA levels must be reduced to <10% of that present in a normal cell to render XPA a limiting factor for NER and consequent cellular sensitivity. To inhibit NER, it may be more effective to interfere with XPA protein function, rather than reducing XPA protein levels.  相似文献   

8.
The xeroderma pigmentosum group A protein (XPA) is an essential component of the eukaryotic nucleotide excision repair (NER) process. Recombinant human XPA was expressed in baculovirus-infected insect cells as a [His](6)-tagged fusion protein. A two-column purification procedure resulted in greater than 90% purity for the recombinant protein with a final yield of 0.53 mg from 200 ml of infected cells. The recombinant protein migrated as a doublet of 44 and 42 kDa upon SDS-PAGE consistent with that observed for the native protein. XPA can interact with a number of proteins including replication protein A (RPA) which has been implicated in the initial recognition of damaged DNA. Using a modified ELISA, we demonstrate that the recombinant XPA fusion protein also forms a complex with RPA independent of DNA. The ability of XPA to bind damaged DNA was assessed in an electrophoretic mobility shift assay using globally cisplatin-damaged DNA. The results revealed a slight preference for DNA damaged with cisplatin consistent with its proposed role in the recognition of damaged DNA. The recombinant XPA fusion protein was able to complement cell-free extracts immunodepleted of XPA restoring NER-catalyzed incision of cisplatin-damaged DNA in an in vitro excision repair assay.  相似文献   

9.
Damage recognition in nucleotide excision repair of DNA   总被引:27,自引:0,他引:27  
Batty DP  Wood RD 《Gene》2000,241(2):193-204
Nucleotide excision repair (NER) is found throughout nature, in eubacteria, eukaryotes and archaea. In human cells it is the main pathway for the removal of damage caused by UV light, but it also acts on a wide variety of other bulky helix-distorting lesions caused by chemical mutagens. An ongoing challenge is to understand how a site of DNA damage is located during NER and distinguished from non-damaged sites. This article reviews information on damage recognition in mammalian cells and the bacterium Escherichia coli. In mammalian cells the XPC-hHR23B, XPA, RPA and TFIIH factors may all have a role in damage recognition. XPC-hHR23B has the strongest affinity for damaged DNA in some assays, as does the similar budding yeast complex Rad4-Rad23. There is current discussion as to whether XPC or XPA acts first in the repair process to recognise damage or distortions. TFIIH may play a role in distinguishing the damaged strand from the non-damaged one, if translocation along a DNA strand by the TFIIH DNA helicases is interrupted by encountering a lesion. The recognition and incision steps of human NER use 15 to 18 polypeptides, whereas E. coli requires only three proteins to obtain a similar result. Despite this, many remarkable similarities in the NER mechanism have emerged between eukaryotes and bacteria. These include use of a distortion-recognition factor, a strand separating helicase to create an open preincision complex, participation of structure-specific endonucleases and the lack of a need for certain factors when a region containing damage is already sufficiently distorted.  相似文献   

10.
Dimerization of human XPA and formation of XPA2-RPA protein complex   总被引:2,自引:0,他引:2  
Yang ZG  Liu Y  Mao LY  Zhang JT  Zou Y 《Biochemistry》2002,41(43):13012-13020
XPA plays an important role in the DNA damage recognition during human nucleotide excision repair. Here we report that the XPA is a homodimer either in the free state or as a complex with human RPA in solution under normal conditions. The human XPA protein purified from baculovirus-infected sf21 insect cells has a molecular mass of 36 317 Da, as determined by mass spectroscopy. However, the apparent molecular mass of XPA determined by the native gel filtration chromatography was about 71 kDa, suggesting that XPA is a dimer. This observation was supported by a native PFO-PAGE and fluorescence spectroscopy analysis. XPA formed a dimer (XPA2) in a broad range of XPA and NaCl concentrations, and the dimerization was not due to the disulfide bond formation. Furthermore, a titration analysis of the binding of XPA to the human RPA indicated that it was the XPA2 that formed the complex with RPA. Finally, the difference between the mass spectrometric and the calculated masses of XPA implies that the protein contains posttranslational modifications. Taken together, our data suggest that the dimerization of XPA may play an important role in the DNA damage recognition of nucleotide excision repair.  相似文献   

11.
In mammalian cells, nucleotide excision repair (NER) is the major pathway for the removal of bulky DNA adducts. Many of the key NER proteins are members of the XP family (XPA, XPB, etc.), which was named on the basis of its association with the disorder xerodoma pigmentosum. Human replication protein A (RPA), the ubiquitous single-stranded DNA-binding protein, is another of the essential proteins for NER. RPA stimulates the interaction of XPA with damaged DNA by forming an RPA–XPA complex on damaged DNA sites. Binding of RPA to the undamaged DNA strand is most important during NER, because XPA, which directs the excision nucleases XPG and XPF, must bind to the damaged strand. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to assess the binding of the tandem high affinity DNA-binding domains, RPA-AB, and of the isolated domain RPA-A, to normal DNA and damaged DNA containing the cyclobutane pyrimidine dimer (CPD) lesion. Both RPA-A and RPA-AB were found to bind non- specifically to both strands of normal and CPD- containing DNA duplexes. There were no differences observed when binding to normal DNA duplex was examined in the presence of the minimal DNA-binding domain of XPA (XPA-MBD). However, there is a drastic difference for CPD-damaged DNA duplex as both RPA-A and RPA-AB bind specifically to the undamaged strand. The strand-specific binding of RPA and XPA to the damaged duplex DNA shows that RPA and XPA play crucial roles in damage verification and guiding cleavage of damaged DNA during NER.  相似文献   

12.
Nucleotide excision repair (NER) is the main DNA repair pathway in mammals for removal of UV-induced lesions. NER involves the concerted action of more than 25 polypeptides in a coordinated fashion. The xeroderma pigmentosum group A protein (XPA) has been suggested to function as a central organizer and damage verifier in NER. How XPA reaches DNA lesions and how the protein is distributed in time and space in living cells are unknown. Here we studied XPA in vivo by using a cell line stably expressing physiological levels of functional XPA fused to green fluorescent protein and by applying quantitative fluorescence microscopy. The majority of XPA moves rapidly through the nucleoplasm with a diffusion rate different from those of other NER factors tested, arguing against a preassembled XPA-containing NER complex. DNA damage induced a transient ( approximately 5-min) immobilization of maximally 30% of XPA. Immobilization depends on XPC, indicating that XPA is not the initial lesion recognition protein in vivo. Moreover, loading of replication protein A on NER lesions was not dependent on XPA. Thus, XPA participates in NER by incorporation of free diffusing molecules in XPC-dependent NER-DNA complexes. This study supports a model for a rapid consecutive assembly of free NER factors, and a relatively slow simultaneous disassembly, after repair.  相似文献   

13.
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.  相似文献   

14.
Human cells contain a protein that binds to UV-irradiated DNA with high affinity. This protein, damaged DNA-binding protein (DDB), is a heterodimer of two polypeptides, p127 and p48. Recent in vivo studies suggested that DDB is involved in global genome repair of cyclobutane pyrimidine dimers (CPDs), but the mechanism remains unclear. Here, we show that in vitro DDB directly stimulates the excision of CPDs but not (6-4)photoproducts. The excision activity of cell-free extracts from Chinese hamster AA8 cell line that lacks DDB activity was increased 3-4-fold by recombinant DDB heterodimer but not p127 subunit alone. Moreover, the addition of XPA or XPA + replication protein A (RPA), which themselves enhanced excision, also enhanced the excision in the presence of DDB. DDB was found to elevate the binding of XPA to damaged DNA and to make a complex with damaged DNA and XPA or XPA + RPA as judged by both electrophoretic mobility shift assays and DNase I protection assays. These results suggest that DDB assists in the recognition of CPDs by core NER factors, possibly through the efficient recruitment of XPA or XPA.RPA, and thus stimulates the excision reaction of CPDs.  相似文献   

15.
Liu Y  Liu Y  Yang Z  Utzat C  Wang G  Basu AK  Zou Y 《Biochemistry》2005,44(19):7361-7368
Human xeroderma pigmentosum group A (XPA) is an essential protein for nucleotide excision repair (NER). We have previously reported that XPA forms a homodimer in the absence of DNA. However, what oligomeric forms of XPA are involved in DNA damage recognition and how the interaction occurs in terms of biochemical understanding remain unclear. Using the homogeneous XPA protein purified from baculovirus-infected Sf21 insect cells and the methods of gel mobility shift assays, gel filtration chromatography, and UV-cross-linking, we demonstrated that both monomeric and dimeric XPA bound to the DNA adduct of N-acetyl-2-aminofluorene (AAF), while showing little affinity for nondamaged DNA. The binding occurred in a sequential and protein concentration-dependent manner. At relatively low-protein concentrations, XPA formed a complex with DNA adduct as a monomer, while at the higher concentrations, an XPA dimer was involved in the specific binding. Results from fluorescence spectroscopic and competitive binding analyses indicated that the specific binding of XPA to the adduct was significantly facilitated and stabilized by the presence of the second XPA in a positive cooperative manner. This cooperative binding exhibited a Hill coefficient of 1.9 and the step binding constants of K(1) = 1.4 x 10(6) M(-)(1) and K(2) = 1.8 x 10(7) M(-)(1). When interaction of XPA and RPA with DNA was studied, even though binding of RPA-XPA complex to adducted DNA was observed, the presence of RPA had little effect on the overall binding efficiency. Our results suggest that the dominant form for XPA to efficiently bind to DNA damage is the XPA dimer. We hypothesized that the concentration-dependent formation of different types of XPA-damaged DNA complex may play a role in cellular regulation of XPA activity.  相似文献   

16.
DNA endonuclease activities from the chromatin of normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells were examined on DNA treated with 8-methoxypsoralen (8-MOP) or 4,5',8-trimethylpsoralen (TMP) plus long wavelength ultraviolet (UVA) light, which produce monoadducts and DNA interstrand cross-links, and angelicin plus UVA light, which produces mainly monoadducts. 9 chromatin-associated DNA endonuclease activities were isolated from normal and XPA cells and assayed for activity on PM2 bacteriophage DNA that had been treated with 8-MOP or TMP in the dark and then exposed to UVA light. Unbound psoralen was removed by dialysis and a second dose of UVA light was given. Cross-linking of DNA molecules was confirmed by alkaline gel electrophoresis. In both normal and XPA cells, two DNA endonuclease activities were found which were active on 8-MOP and TMP plus UVA light treated DNA. One of these endonuclease activities, pI 4.6, is also active on intercalated DNA and a second one, pI 7.6, is also active on UVC (254 nm) light irradiated DNA. The major activity against angelicin plus UVA light treated DNA in both normal and XPA cells was found in the fraction, pI 7.6. The levels of activity of both of these fractions on all 3 psoralen-damaged DNAs were similar between normal and XPA cells. These results indicate that in both normal and XPA cells there are at least two different DNA endonucleases which act on both 8-MOP and TMP plus UVA light treated DNA.  相似文献   

17.
18.
DNA damage recognition during nucleotide excision repair in mammalian cells   总被引:13,自引:0,他引:13  
Wood RD 《Biochimie》1999,81(1-2):39-44
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.  相似文献   

19.
The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein-protein and protein-DNA interactions within NER complexes. We have investigated an essential protein-protein interaction of the NER pathway, the binding of the XPA protein to the ERCC1 subunit of the repair endonuclease ERCC1-XPF. The structure of ERCC1 in complex with an XPA peptide shows that only a small region of XPA interacts with ERCC1 to form a stable complex exhibiting submicromolar binding affinity. However, this XPA peptide is a potent inhibitor of NER activity in a cell-free assay, blocking the excision of a cisplatin adduct from DNA. The structure of the peptide inhibitor bound to its target site reveals a binding interface that is amenable to the development of small molecule peptidomimetics that could be used to modulate NER repair activities in vivo.  相似文献   

20.
Cells from patients with xeroderma pigmentosum, complementation group A (XPA), are known to be defective in repair of pyrimidine dimers and other forms of damage produced by 254-nm ultraviolet (UVC) radiation. We have isolated a DNA endonuclease, pI 7.6, from the chromatin of normal human lymphoblastoid cells which recognizes damage produced by UVC light, and have introduced this endonuclease into UVC-irradiated XPA cells in culture to determine whether it can restore their markedly deficient DNA repair-related unscheduled DNA synthesis (UDS). Introduction of the normal endonuclease, which recognizes predominantly pyrimidine dimers, but not the corresponding XPA endonuclease into UVC-irradiated XPA cells restored their levels of UDS to approximately 80% of normal values. Electroporation of both the normal and the XPA endonuclease into normal human cells increases UDS in normal cells to higher than normal values. These results indicate that the normal endonuclease can restore UDS in UVC-irradiated XPA cells. They also indicate that XPA cells have an endonuclease capable of increasing the efficiency of repair of UVC damage in normal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号