首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Introduction

Differences in the metabolite profiles between serum and plasma are incompletely understood.

Objectives

To evaluate metabolic profile differences between serum and plasma and among plasma sample subtypes.

Methods

We analyzed serum, platelet rich plasma (PRP), platelet poor plasma (PPP), and platelet free plasma (PFP), collected from 8 non-fasting apparently healthy women, using untargeted standard 1D and CPMG 1H NMR and reverse phase and hydrophilic (HILIC) UPLC-MS. Differences between metabolic profiles were evaluated using validated principal component and orthogonal partial least squares discriminant analysis.

Results

Explorative analysis showed the main source of variation among samples was due to inter-individual differences with no grouping by sample type. After correcting for inter-individual differences, lipoproteins, lipids in VLDL/LDL, lactate, glutamine, and glucose were found to discriminate serum from plasma in NMR analyses. In UPLC-MS analyses, lysophosphatidylethanolamine (lysoPE)(18:0) and lysophosphatidic acid(20:0) were higher in serum, and phosphatidylcholines (PC)(16:1/18:2, 20:3/18:0, O-20:0/22:4), lysoPC(16:0), PE(O-18:2/20:4), sphingomyelin(18:0/22:0), and linoleic acid were lower. In plasma subtype analyses, isoleucine, leucine, valine, phenylalanine, glutamate, and pyruvate were higher among PRP samples compared with PPP and PFP by NMR while lipids in VLDL/LDL, citrate, and glutamine were lower. By UPLC-MS, PE(18:0/18:2) and PC(P-16:0/20:4) were higher in PRP compared with PFP samples.

Conclusions

Correction for inter-individual variation was required to detect metabolite differences between serum and plasma. Our results suggest the potential importance of inter-individual effects and sample type on the results from serum and plasma metabolic phenotyping studies.
  相似文献   

2.

Introduction

Gastric cancer (GC) is a malignant tumor worldwide. As primary pathway for metastasis, the lymphatic system is an important prognostic factor for GC patients. Although the metabolic changes of gastric cancer have been investigated in extensive studies, little effort focused on the metabolic profiling of lymph node metastasis (LNM)-positive or negative GC patients.

Objectives

We performed 1H NMR spectrum of GC tissue samples with and without LNM to identify novel potential metabolic biomarkers in the process of LNM of GC.

Methods

1H NMR-based untargeted metabolomics approach combined with multivariate statistical analyses were used to study the metabolic profiling of tissue samples from LNM-positive GC patients (n?=?40), LNM-negative GC patients (n?=?40) and normal controls (n?=?40).

Results

There was a clear separation between GC patients and normal controls, and 33 differential metabolites were identified in the study. Moreover, GC patients were also well-classified according to LNM-positive or negative. Totally eight distinguishing metabolites were selected in the metabolic profiling of GC patients with LNM-positive or negative, suggesting the metabolic dysfunction in the process of LNM. According to further validation and analysis, especially BCAAs metabolism (leucine, isoleucine, valine), GSH and betaine may be as potential factors of diagnose and prognosis of GC patients with or without LNM.

Conclusion

To our knowledge, this is the first metabolomics study focusing on LNM of GC. The identified distinguishing metabolites showed a promising application on clinical diagnose and therapy prediction, and understanding the mechanism underlying the carcinogenesis, invasion and metastasis of GC.
  相似文献   

3.

Background

Purpose of the study was to investigate alterations in midbrain serotonin transporter (SERT) binding in patients with epilepsy and symptoms of depression compared to patients with epilepsy with no symptoms of depression.

Methods

We studied 12 patients with epilepsy (7 patients had focal and 5 had generalized epilepsy syndromes). The presence of self-reported symptoms of depression was assessed using Beck Depression Inventory (BDI) and the Emotional State Questionnaire (EST-Q). The binding potential of the SERT was assessed by performing brain single photon emission tomography (SPET) using the SERT radioligand 2-((2-((dimethylamino)methyl)phenyl)thio)-5-(123)iodophenylamine (123I-ADAM).

Results

Seven patients had BDI and EST-Q subscale scores greater than 11 points, which was interpreted as the presence of symptoms of depression. We found that 123I-ADAM binding was not significantly different between patients with epilepsy with and without symptoms of depression. In addition, 123I-ADAM binding did not show a significant correlation to either BDI or EST-Q depression subscale scores and did not differ between patients with focal vs. generalized epilepsy.

Conclusion

The results of our study failed to demonstrate alterations of SERT binding properties in patients with epilepsy with or without symptoms of depression.
  相似文献   

4.

Introduction

Although it is still at a very early stage compared to its mass spectrometry (MS) counterpart, proton nuclear magnetic resonance (NMR) lipidomics is worth being investigated as an original and complementary solution for lipidomics. Dedicated sample preparation protocols and adapted data acquisition methods have to be developed to set up an NMR lipidomics workflow; in particular, the considerable overlap observed for lipid signals on 1D spectra may hamper its applicability.

Objectives

The study describes the development of a complete proton NMR lipidomics workflow for application to serum fingerprinting. It includes the assessment of fast 2D NMR strategies, which, besides reducing signal overlap by spreading the signals along a second dimension, offer compatibility with the high-throughput requirements of food quality characterization.

Method

The robustness of the developed sample preparation protocol is assessed in terms of repeatability and ability to provide informative fingerprints; further, different NMR acquisition schemes—including classical 1D, fast 2D based on non-uniform sampling or ultrafast schemes—are evaluated and compared. Finally, as a proof of concept, the developed workflow is applied to characterize lipid profiles disruption in serum from β-agonists diet fed pigs.

Results

Our results show the ability of the workflow to discriminate efficiently sample groups based on their lipidic profile, while using fast 2D NMR methods in an automated acquisition framework.

Conclusion

This work demonstrates the potential of fast multidimensional 1H NMR—suited with an appropriate sample preparation—for lipidomics fingerprinting as well as its applicability to address chemical food safety issues.
  相似文献   

5.

Objectives

To improve cellulase production and activity, Trichoderma viride GSICC 62010 was subjected to mutation involving irradiation with an electron beam and subsequently with a 12C6+-ion beam.

Results

Mutant CIT 626 was the most promising cellulase producer after preliminary and secondary screening. Soluble protein production and cellulase activities were increased mutifold. The optimum temperature, pH and culture time for the maximum cellulase production of the selected mutant were 35 °C, pH 5 and 6 days. The highest cellulase production was obtained using wheat bran. The prepared cellulases from T. viride CIT 626 had twice the hydrolytic performance with sawdust (83 %) than that from the parent strain (42.5 %). Furthermore, molecular studies demonstrated that there were some key mutation sites suggesting that some amino acid changes in the protein caused by base mutations had led to the enhanced cellulase production and activity.

Conclusions

Mutagenesis with electron and 12C6+-ion beams could be developed as an effective tool for improvement of cellulase producing strains.
  相似文献   

6.

Introduction

Despite the use of buffering agents the 1H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples.

Objectives

To investigate the acid, base and metal ion dependent 1H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture.

Methods

Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl2, MgCl2, NaCl or KCl, and their 1H NMR spectra were acquired.

Results

Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na+, K+, Ca2+ and Mg2+, were also measured.

Conclusion

These data will be a valuable resource for 1H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1H NMR spectra.
  相似文献   

7.

Introduction

Meningitis, a morbidly infectious central nervous system pathology is accompanied by acute inflammation of the meninges, causing raised intracranial pressure linked with serious neurological sequelae.

Objective

To observe the variation in the metabolic profile, that may occur in serum and urine along with CSF in adults using 1H NMR spectroscopy, with an attempt of appropriate and timely treatment regimen.

Methods

The 1H NMR-based metabolomics has been performed in 115 adult subjects for differentiating bacterial meningitis (BM) and tubercular meningitis (TBM).

Results

The discriminant function analysis (DFA) of the three bio-fluids collectively identified 3-hydroxyisovalerate, lactate, glucose, formate, valine, alanine, ketonic bodies, malonate and choline containing compounds (choline and GPC) as significant metabolites among cases versus control group. The differentiation of bacterial meningitis and tuberculous meningitis (BM vs. TBM) can be done on the basis of identification of 3-hydroxyisovalerate, isobutyrate and formate in case of CSF (with a correct classification of 78 %), alanine in serum (correct classification 60 %), valine and acetone in case of urine (correct classification 89.1 %). The NMR spectral bins based orthogonal signal correction principal component analysis score plots of significant metabolites obtained from DFA also provided group classification among cases versus control group in CSF, serum and urine samples. The variable importance in projection scores also identified similar significant metabolites as obtained from DFA, collectively in CSF, serum and urine samples, responsible for differentiation of meningitis.

Conclusion

The CSF contained metabolites which are formed during infection and inflammation, and these were also found in significant quantity in serum and urine samples.
  相似文献   

8.

Introduction

The differences in fecal metabolome between ankylosing spondylitis (AS)/rheumatoid arthritis (RA) patients and healthy individuals could be the reason for an autoimmune disorder.

Objectives

The study explored the fecal metabolome difference between AS/RA patients and healthy controls to clarify human immune disturbance.

Methods

Fecal samples from 109 individuals (healthy controls 34, AS 40, and RA 35) were analyzed by 1H NMR spectroscopy. Data were analyzed with principal component analysis (PCA) and orthogonal projection to latent structure discriminant (OPLS-DA) analysis.

Results

Significant differences in the fecal metabolic profiles could distinguish AS/RA patients from healthy controls but could not distinguish between AS and RA patients. The significantly decreased metabolites in AS/RA patients were butyrate, propionate, methionine, and hypoxanthine. Significantly increased metabolites in AS/RA patients were taurine, methanol, fumarate, and tryptophan.

Conclusion

The metabolome variations in feces indicated AS and RA were two homologous diseases that could not be distinguished by 1H NMR metabolomics.
  相似文献   

9.

Introduction

Oxygen from carbon dioxide, water or molecular oxygen, depending on the responsible enzyme, can lead to a large variety of metabolites through chemical modification.

Objectives

Pathway-specific labeling using isotopic molecular oxygen (18O2) makes it possible to determine the origin of oxygen atoms in metabolites and the presence of biosynthetic enzymes (e.g., oxygenases). In this study, we established the basis of 18O2-metabolome analysis.

Methods

18O2 labeled whole Medicago truncatula seedlings were prepared using 18O2-air and an economical sealed-glass bottle system. Metabolites were analyzed using high-accuracy and high-resolution mass spectrometry. Identification of the metabolite was confirmed by NMR following UHPLC–solid-phase extraction (SPE).

Results

A total of 511 peaks labeled by 18O2 from shoot and 343 peaks from root were annotated by untargeted metabolome analysis. Additionally, we identified a new flavonoid, apigenin 4′-O-[2′-O-coumaroyl-glucuronopyranosyl-(1–2)-O-glucuronopyranoside], that was labeled by 18O2. To the best of our knowledge, this is the first report of apigenin 4′-glucuronide in M. truncatula. Using MSn analysis, we estimated that 18O atoms were specifically incorporated in apigenin, the coumaroyl group, and glucuronic acid. For apigenin, an 18O atom was incorporated in the 4′-hydroxy group. Thus, non-specific incorporation of an 18O atom by recycling during one month of labeling is unlikely compared with the more specific oxygenase-catalyzing reaction.

Conclusion

Our finding indicated that 18O2 labeling was effective not only for the mining of unknown metabolites which were biosynthesized by oxygenase-related pathway but also for the identification of metabolites whose oxygen atoms were derived from oxygenase activity.
  相似文献   

10.

Introduction

The analysis of limited-quantity samples remains a challenge associated with mouse models, especially for multi-platform metabolomics studies. Although inherently insensitive, the highly specific characteristics of nuclear magnetic resonance (NMR) spectroscopy make it an advantageous platform for global metabolite profiling, particularly in mitochondrial disease research.

Objectives

Show method equivalency between a well-established standard operating protocol (SOP) and our novel miniaturized 1H-NMR method.

Method

The miniaturized method was performed in a 2 mm NMR tube on a standard 500 MHz NMR spectrometer with a 5 mm triple-resonance inverse TXI probe at room temperature.

Results

Firstly, using synthetic urine spiked with low (50 µM), medium (250 µM) and high (500 µM) levels (n?=?10) of nine standards, both the SOP and miniaturized method were shown to have acceptable precision (CV?<?15%), relative accuracy (80–120%), and linearity (R2?>?0.95), except for taurine. Furthermore, statistical equivalence was shown using the two one-sided test. Secondly, pooled mouse quadriceps muscle extract was used to further confirm method equivalence (n?=?3), as well as explore the analytical dynamics of this novel approach by analyzing more-concentrated versions of samples (up to 10× concentration) to expand identification of metabolites qualitatively, with quantitative linearity. Lastly, we demonstrate the new technique’s application in a pilot metabolomics study using minute soleus muscle tissue from a mouse model of Leigh syndrome using Ndufs4 KO mice.

Conclusion

We demonstrate method equivalency, supporting our novel miniaturized 1H-NMR method as a financially feasible alternative to cryoprobe technology—for limited-quantity biological samples in metabolomics studies that requires a volume one-tenth of the SOP.
  相似文献   

11.

Objectives

To determine the origin of 15N-labeled phenylalanine in microbial metabolic flux analysis using 15N as a tracer, a method for measuring phenylalanine δ15N using HPLC coupled with elemental analysis-isotope ratio mass spectrometry (EA-IRMS) was developed.

Results

The original source of the 15N-labeled phenylalanine was determined using this new method that consists of three steps: optimization of the HPLC conditions, evaluation of the isotope fractionation effects, and evaluation of the effect of pre-processing on the phenylalanine nitrogen stable isotope. In addition, the use of a 15N-labeled inorganic nitrogen source, rather than 15N-labeled amino acids, was explored using this method.

Conclusions

The method described here can also be applied to the analysis of metabolic flux.
  相似文献   

12.

Introduction

Metabolite identification in biological samples using Nuclear Magnetic Resonance (NMR) spectra is a challenging task due to the complexity of the biological matrices.

Objectives

This paper introduces a new, automated computational scheme for the identification of metabolites in 1D 1H NMR spectra based on the Human Metabolome Database.

Methods

The methodological scheme comprises of the sequential application of preprocessing, data reduction, metabolite screening and combination selection.

Results

The proposed scheme has been tested on the 1D 1H NMR spectra of: (a) an amino acid mixture, (b) a serum sample spiked with the amino acid mixture, (c) 20 blood serum, (d) 20 human amniotic fluid samples, (e) 160 serum samples from publicly available database. The methodological scheme was compared against widely used software tools, exhibiting good performance in terms of correct assignment of the metabolites.

Conclusions

This new robust scheme accomplishes to automatically identify peak resonances in 1H-NMR spectra with high accuracy and less human intervention with a wide range of applications in metabolic profiling.
  相似文献   

13.

Background

Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo.

Methods

We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice.

Results

We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b+Gr-1+ myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8+ T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation.

Conclusions

Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF.
  相似文献   

14.

Introduction

Adoption of automatic profiling tools for 1H-NMR-based metabolomic studies still lags behind other approaches in the absence of the flexibility and interactivity necessary to adapt to the properties of study data sets of complex matrices.

Objectives

To provide an open source tool that fully integrates these needs and enables the reproducibility of the profiling process.

Methods

rDolphin incorporates novel techniques to optimize exploratory analysis, metabolite identification, and validation of profiling output quality.

Results

The information and quality achieved in two public datasets of complex matrices are maximized.

Conclusion

rDolphin is an open-source R package (http://github.com/danielcanueto/rDolphin) able to provide the best balance between accuracy, reproducibility and ease of use.
  相似文献   

15.

Introduction

The high market value of saffron (Crocus sativus L.) has made it an attractive candidate for adulteration. Safflower (Carthamus tinctorius L.) and tartrazine are among the most common herbal and synthetic foreign materials that may be added to pure saffron for the purpose of adulteration. In spite of encouraging advances achieved in the identification of adulteration in saffron samples, the lack of a simple method with sufficient power for discrimination of pure high grade saffron from meticulously adulterated saffron samples persuaded us to perform this study.

Objectives

In this work, we show that 1H NMR spectroscopy together with chemometric multivariate data analysis methods can be used for the detection of adulteration in saffron.

Methods

Authentic Iranian saffron samples (n?=?20) and adulterated samples that were prepared by adding either different quantities of natural plant materials such as safflower, or synthetic dyes such as tartrazine or naphthol yellow to pure saffron (n?=?22) composed the training set. This training set was used to build multivariate Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) models. The predictive power of the PLS-DA model was validated by testing the model against an external dataset (n?=?13).

Results

PCA and PLS-DA models could both discriminate between the authentic and adulterated samples, and the external validation showed 100% sensitivity and specificity for predicting the authenticity of suspicious samples. Peaks specific to authentic and adulterated samples were also characterized. Proximity of samples with unknown adulteration status to the samples adulterated with known compounds in the PCA provided insight regarding the identity of the adulterant in the suspicious samples. Furthermore, the authentic samples could be distinguished based on their cultivation site.

Conclusion

The present study demonstrates that the application of 1H NMR spectroscopy coupled with multivariate data analysis is a suitable approach for detection of adulteration in saffron specimens. Outstanding sensitivity and specificity of the PLS-DA model in discriminating the authentic from adulterated samples in external validation confirmed the high predictive power of the model. The advantage of the present method is its power for detecting a wide spectrum of adulterants, ranging from synthetic dyes to herbal materials, in a single assay.
  相似文献   

16.

Background

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles.

Methods

Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin?+?cells in sciatic nerves of EAN rats.

Results

A robust accumulation of Fascin?+?cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN.

Conclusion

Our results suggest a pathological role of Fascin in EAN.

Virtual slides

The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811
  相似文献   

17.

Introduction

Root-mediated changes in soil organic matter (SOM) decomposition, termed rhizosphere priming effects (RPE), play crucial roles in the global carbon (C) cycle, but their mechanisms and field relevance remain ambiguous. We hypothesize that nitrogen (N) shortages may intensify SOM decomposition in the rhizosphere because of increase of fine roots and rhizodeposition.

Methods

RPE and their dependence on N-fertilization were studied using a C3-to-C4 vegetation change. N-fertilized and unfertilized soil cores, with and without maize, were incubated in the field for 50 days. Soil CO2 efflux was measured, partitioned for SOM- and root-derived CO2, and RPE was calculated. Plant biomass, microbial biomass C (MBC) and N (MBN), and enzyme activities (β-1,4-glucosidase; N-acetylglucosaminidase; L-leucine aminopeptidase) were analyzed.

Results

Roots enhanced SOM mineralization by 35 % and 126 % with and without N, respectively. This was accompanied by higher specific root-derived CO2 in unfertilized soils. MBC, MBN and enzyme activities increased in planted soils, indicating microbial activation, causing positive RPE. N-fertilization had minor effects on MBC and MBN, but it reduced β-1,4-glucosidase and L-leucine aminopeptidase activities under maize through lower root-exudation. In contrast, N-acetylglucosaminidase activity increased with N-fertilization in planted and unplanted soils.

Conclusions

This study showed the field relevance of RPE and confirmed that, despite higher root biomass, N availability reduces RPE by lowering root and microbial activity.
  相似文献   

18.

Background

The use of diagnostic 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) imaging for the staging, restaging, and treatment monitoring of melanoma patients has become a well-recognized standard of care. It plays a key role in detecting sites of occult disease and is widely utilized in the medical and surgical planning of such patients. In the current report, we describe an innovative multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic tumor foci in a case of occult recurrent metastatic melanoma.

Case presentation

This report discusses a case of occult recurrent metastatic melanoma, isolated to three separate sites within the subcutaneous tissues of the left thigh region, which was not clinically apparent but was found on diagnostic restaging whole body 18F-FDG PET/CT scan utilizing an intravenous injection of 14.8 mCi 18F-FDG. Then, on the day of surgery, the patient received an intravenous injection of 12.8 mCi 18F-FDG. A multimodality approach of intraoperative handheld gamma probe detection, intraoperative ultrasound tumor localization, specimen PET/CT imaging, and postoperative PET/CT imaging was utilized for accomplishing and verifying the excision of all three sites of occult recurrent metastatic melanoma within the left thigh region.

Conclusion

This innovative multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound is promising combined technology for aiding in tumor localization and verification of excision and may ultimately impact positively upon long-term outcome of selected patients.  相似文献   

19.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

20.

Background

Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca2+ release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood.

Results

In the present study we investigated insulin-dependent mitochondrial Ca2+ signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca2+-fluorescent probes we showed that insulin increases mitochondrial Ca2+ levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca2+ uniporter, as well as by siRNA-dependent mitochondrial Ca2+ uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca2+ uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca2+ uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling.

Conclusions

Mitochondrial Ca2+ uptake is a key event in insulin signaling and metabolism in cardiomyocytes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号