首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of methanol on the growth of representative, predominant, anaerobic gut bacteria were studied. Growth yields and rates were determined in a base medium to which methanol was added to produce media with methanol concentrations varying, in twofold steps, over a concentration range of 0.01 to 25%, by volume. The growth of many of the organisms was completely inhibited by a methanol concentration equal to, or less than, 6.2%. Isolates representing cellulolytic species were completely inhibited at a methanol concentration of 3.1%, and inhibitory effects on the yield of some cellulolytic isolates were found at a methanol concentration as small as 0.01%. Although most of the organisms studied were inhibited at relatively small methanol concentrations, isolates of Selenomonas ruminantium, Bacteroides ovatus, and Fusobacterium necrophorum were relatively methanol resistant. A methanol concentration of 12.5% was required to completely inhibit S. ruminantium. Substantial growth of B. ovatus was obtained in media containing 12.5% methanol, and for F. necrophorum, substantial growth occurred in media containing 25% methanol. The yields of F. necrophorum strain B85 and S. ruminantium strain PC18 were enhanced by relatively small methanol concentrations and reduced with further methanol concentration increase Anaerobic, nonsporing gut bacteria exhibit a diversity of responses to methanol.  相似文献   

2.
Isolation and identification of fecal bacteria from adult swine.   总被引:4,自引:16,他引:4       下载免费PDF全文
An examination of the fecal microflora of adult swine was made with regard to the efficiency of several roll tube media in enumeration and recovery of anaerobes, the effects of medium constituents on recovery, and the isolation and identification of the predominant kinds of bacteria. Total number of organisms by microscopic bacterial counts varied among fecal samples from 4.48 X 10(10) to 7.40 X 10(10) bacteria/g (wet weight). Comparison of different nonselective roll tube media indicated that about 30% of the fecal bacteria could be recovered with a rumen fluid (40%, vol/vol) medium (M98-5). Recoveries of 21 and 15%, respectively, were obtained with M10 and rumen fluid-glucose-cellobiose agar (RGCA) media. Rumen fluid, Trypticase, sugars, and CO2 gas phase were important components required for maximum recovery with this medium. Similar high recoveries of anaerobes were also obtained with M98-5 containing swine cecal extract of place in rumen fluid or M10 plus swine cecal extract. Significantly lower recoveries were observed with RCGA, media supplemented with swine fecal extracts, reinforced clostridial medium, brain heart infusion agar, and prereduced blood agar. Ninety percent of the bacteria isolated from roll tube media were gram positive and consisted of facultatively anaerobic streptococci, Eubacterium sp., Clostridium sp., and Propionibacterium acnes. The remainder of the flora (8%) included several other species of anaerobes and Escherichia coli. Rumen fluid (or volatile fatty acids), Trypticase, and yeast extract additions to basal media stimulated the growth of anaerobic strains. Variation in the relative proportions of the predominant fecal microflora was observed. This work indicates that satisfactory enumeration, isolation and cultivation of the predominant microflora in swine feces can be obtained when strict anaerobic culture methods and a rumen fluid medium are used.  相似文献   

3.
1. Wind‐induced sediment resuspension in shallow lakes affects many physical and biological processes, including food gathering by zooplankton. The effects of suspended sediment on clearance rate were determined for a dominant cladoceran, Daphnia carinata, and calanoid copepod, Boeckella hamata, in Lake Waihola, New Zealand. 2. Animals were incubated at multiple densities for 4 days in lake water containing different amounts of suspended lake sediment. Rates of harvest of major food organisms were determined for each sediment level (turbidity) from changes in net growth rate with grazer density. 3. Daphnia cleared all food organisms 7–40 μm in length at similar rates, but was less efficient in its removal of free bacteria, phytoplankton <7 μm, and large cyanobacterial filaments. Elevation of sediment turbidity from 2 to 10 nephelometric turbidity units (NTU) (63 mg DW L?1 added sediment) reduced Daphnia clearance of phytoplankton, heterotrophic flagellates and ciliates by 72–100%, and of amoebae and attached bacteria by 21–44%. Further inhibition occurred at higher turbidity. 4. Boeckella hamata removed microzooplankton primarily, rather than phytoplankton. The rate at which it cleared rotifers was reduced by 56% when turbidity was increased from 2.5 to 100 NTU. 5. In the absence of macrozooplankton, algal growth increased with sediment turbidity, suggesting that sediment also inhibits rotifer grazing. 6. As mid‐day turbidity in Lake Waihola is ≥10 NTU about 40% of the time, sediment resuspension may play a major role in moderating energy flow and structuring pelagic communities in this lake.  相似文献   

4.
The effect of glycerol on the growth, adhesion, and cellulolytic activity of two rumen cellulolytic bacterial species,Ruminococcus flavefaciens andFibrobacter succinogenes subsp.succinogenes, and of an anaerobic fungal species,Neocallimastix frontalis, was studied. At low concentrations (0.1–1%), glycerol had no effect on the growth, adhesion, and cellulolytic activity of the two bacterial species. However, at a concentration of 5%, it greatly inhibited their growth and cellulolytic activity. Glycerol did not affect the adhesion of bacteria to cellulose. The growth and cellulolytic activity ofN. frontalis were inhibited by glycerol, increasingly so at higher concentrations. At a concentration of 5%, glycerol totally inhibited the cellulolytic activity of the fungus. Thus, glycerol can be added to animal feed at low concentrations.  相似文献   

5.
Obligately anaerobic oxalate-degrading bacteria were isolated from an enriched population of rumen bacteria in an oxalate-containing medium that had been depleted of other readily metabolized substrates. These organisms, which are the first reported anaerobic oxalate degraders isolated from the rumen, were gram negative, nonmotile rods. They grew in a medium containing sodium oxalate, yeast extract, cysteine, and minerals. The only substrate that supported growth was oxalate. Growth was directly related to the concentration of oxalate in the medium (1 to 111 mM), and cell yields were approximately 1.1 g (dry weight)/mol of oxalate degraded. Oxalate was stoichiometrically degraded to CO2 and formate. These anaerobes occupy a unique ecological niche and are distinct from any previously described oxalate-degrading bacteria.  相似文献   

6.
Enrichment cultures that anaerobically degraded oxalate were obtained from lake sediment inocula. From these, 5 pure cultures of anaerobic oxalate-degrading bacteria were isolated and partially characterized. The isolates were Gram-negative, non-sporeforming, non-motile, obligate anaerobes. Oxalate was required for growth and was stoichiometrically converted to formate; 14CO2 was also recovered when 14C-oxalate was added. Maximal growth occurred when the oxalate concentration was 50 mM. Acetate stimulated growth in the presence of oxalate, however, 14C-experiments indicated that acetate was only utilized for cell carbon.The isolates were either spiral-shaped or rod-shaped organisms. The first morphotype grew much more slowly than the second and exhibited 13-fold lower cell yields. These isolates represent a new strain of oxalate-degrading bacteria. The second morphotype was similar to the anaerobic oxalate-degrading bacteria previously found in rumen. This report extends the known habitats in which anaerobic oxalate-degrading organisms have been found to include aquatic sediments.  相似文献   

7.
The rate of uptake of mixed rumen bacteria and free amino acids by washed suspensions of seven species of rumen ciliate protozoa has been followed. By assuming that the behaviour of these protozoa was the same under these conditions as during growth it was shown that Ophryoscolex caudatus could obtain the amino acids for growth by the engulfment of rumen bacteria. However, all the cellulolytic protozoa studied (Diploplastron affine, Diplodinium anacanthum, Diplodinium anisacanthum, Enoploplastron triloricatum, Eremoplastron bovis and Ostracodinium obtusum bilobum) were unable to obtain sufficient amino acids from either source to grow at even 25% of the maximum rate and it is postulated that they might utilize plant protein. O. caudatus grown in vitro did not engulf Klebsiella aerogenes or Escherichia coli but took up other bacteria and a rumen yeast at rates of up to 54000 organisms/protozoon/h from a population density of 109/ml. When grown in vivo it was more selective and engulfed mixed rumen bacteria at only 10% of the rate obtained with protozoa grown in vitro. D. affine grown in vitro did not engulf Bacteroides ruminicola, Esch. coli, Kl. aerogenes or Proteus mirabilis but took up mixed rumen bacteria from a population of 109/ml at a rate of 2200 bacteria/ protozoon/h.  相似文献   

8.
An extract of the desert plant Yucca shidigera was assessed for its possible benefit in ruminal fermentation. The extract bound ammonia in aqueous solution when concentrations of ammonia were low (up to 0.4 mM) and when the extract was added at a high concentration to the sample (20%, vol/vol). The apparent ammonia-binding capability was retained after autoclaving and was decreased slightly following dialysis. Acid-precipitated extract was inactive. No evidence of substantial ammonia binding was found at higher ammonia concentrations (up to 30 mM). When Y. shidigera extract (1%, vol/vol) was added to strained rumen fluid in vitro, a small (6%) but significant (P < 0.05) decrease in ammonia concentration occurred, apparently because of decreased proteolysis. Inclusion of Y. shidigera extract (1%, vol/vol) in the growth medium of the rumen bacterium Streptococcus bovis ES1 extended its lag phase, while growth of Butyrivibrio fibrisolvens SH13 was abolished. The growth of Prevotella (Bacteroides) ruminicola B(1)4 was stimulated, and that of Selenomonas ruminantium Z108 was unaffected. Protozoal activity, as measured by the breakdown of 14C-leucine-labelled S. ruminantium in rumen fluid incubated in vitro, was abolished by the addition of 1% extract. The antimicrobial activities were unaffected by precipitating tannins with polyvinylpyrrolidone, but a butanol extract, containing the saponin fraction, retained its antibacterial and antiprotozoal effects. Saponins from other sources were less effective against protozoa than Y. shidigera saponins. Y. shidigera extract, therefore, appears unlikely to influence ammonia concentration in the rumen directly, but its saponins have antimicrobial properties, particularly in suppressing ciliate protozoa, which may prove beneficial to ruminal fermentation and may lead indirectly to lower ruminal ammonia concentrations.  相似文献   

9.
Growth of the autotrophic nitrifying bacteria Nitrosomonas europaea and Nitrobacter sp. was studied in continuous culture. Steady state growth kinetics of both organisms conformed with that predicted by chemostat theory, modified to account for maintenance energy requirement. Steady state data were used to calculate the maximum specific growth rate, the saturation constant for growth, the true growth yield and the maintenance coefficient. Transient growth was studied by imposing step changes in dilution rate. Step increases resulted in overshoots and oscillations in substrate concentration before establishment of a new steady state while step decreases in dilution rate were followed by monotonic changes in substrate concentration. The size of overshoots in substrate concentration following step increases in dilution rate was dependent on both the magnitude of the increase and of the dilution rate prior to the change.  相似文献   

10.
A fed-batch, anaerobic culture system was developed to assess the behavior of Escherichia coli O157:H7 in a rumen-like environment. Fermentation medium consisted of either 50% (vol/vol) raw or sterile rumen fluid and 50% phosphate buffer. Additional rumen fluid was added twice per day, and samples were removed three times per day to simulate the exiting of digesta and microbes from the rumen environment under typical feeding regimens. With both types of medium, anaerobic and enteric bacteria reached 10(10) and 10(4) cells/ml, respectively, and were maintained at these levels for at least 5 days. When a rifampin-resistant strain of E. coli O157:H7 was inoculated into medium containing raw rumen fluid, growth did not occur. In contrast, when this strain was added to sterile rumen fluid medium, cell densities increased from 10(6) to 10(9) CFU/ml within 24 h. Most strains of E. coli O157:H7 are unable to ferment sorbitol; therefore, we assessed whether the addition of sorbitol as the only added carbohydrate could be used to competitively exclude E. coli O157:H7 from the culture system. When inoculated into raw rumen broth containing 3 g of sorbitol per liter, E. coli O157:H7 was displaced within 72 h. The addition of other competitive sugars, such as L-arabinose, trehalose, and rhamnose, to rumen medium gave similar results. However, whenever E. coli O157:H7 was grown in sterile rumen broth containing sorbitol, sorbitol-positive mutants appeared. These results suggest that a robust population of commensal ruminal microflora is required to invoke competitive exclusion of E. coli O157:H7 by the addition of "nonfermentable" sugars and that this approach may be effective as a preharvest strategy for reducing carriage of E. coli O157:H7 in the rumen.  相似文献   

11.
Autoclaved cells of gram-positive bacteria or mixed rumen organisms promote the growth of rumen strains of Methanobacterium ruminantium, but cells of E. coli were only stimulatory to growth after treatment with lysozyme plus EDTA or with EDTA alone.N-acetylglucosamine is identified as one of the growth factors for rumen strains of Mb. ruminantium.  相似文献   

12.
Two anaerobic rumen bacteria, Eubacterium ruminantium and a closely related isolate, were studied to determine the effect of the valine antimetabolite alpha-aminobutyric acid on growth and production of extracellular isoleucine and valine in an amino acid free medium. In the absence of alpha-aminobutyrate, these organisms actively excreted valine during growth (90-195 microgram/mL) but only accumulated limited concentrations of isoleucine (3-7 microgram/mL) in the culture broth. Growth of both organisms was reduced in the presence of 0.5-1.5% alpha-aminobutyrate but this inhibition was largely overcome by the use of preadapted inoculum. Metabolism of alpha-aminobutyrate was also increased using preadapted inoculum. During growth in the presence of 0.5-1.5% alpha-aminobutyrate, both organisms accumulated high concentrations of isoleucine (100-225 microgram/mL) while the normal accumulation of valine was unaffected. alpha-Ketobutyrate, a product of alpha-aminobutyrate metabolism, also stimulated isoleucine excretion by these organisms. The results are discussed in relation to the regulation of the biosynthetic pathways of isoleucine and valine in these rumen anaerobes and the potential significance of this amino acid excretion in ruminant nutrition.  相似文献   

13.
The microflora in strained rumen fluid did not methylate or volatilize 203Hg2+ at detectable rates. However, there was an exponential decay in the concentration of added CH3Hg+, which was attributed to demethylation. The major product of demethylation was metallic mercury (Hg0), and it was released as a volatile product from the reaction mixture. Demethylation occurred under both anaerobic and aerobic conditions. The rate of demethylation was proportional to the concentration of added CH3Hg+-Hg from 0.02 to 100 microgram of Hg per ml. The presence of HgCl2 had almost no inhibitory effect on the rate of cleavage of the carbon-mercury bond of CH2HgCl, but it completely inhibited volatilization of the Hg formed, when the concentration of HgCl2-Hg reached 100 micrograms/ml. Three of 11 species of anaerobic rumen bacteria catalyzed demethylation. These were Desulfovibrio desulfuricans, Selenomonas ruminantium, and Megasphaera elsdenii. None of the 11 species caused detectable methylation, and only two caused limited volatilization of Hg2+. Three species of bacteria out of 90 fresh aerobic isolates from rumen contents were demethylators: two were identified as Pseudomonas sp., and the third was a Micrococcus sp. Demethylation by the rumen microflora appeared to be carried out by both aerobic and anaerobic bacteria and, on the basis of Hg2+ sensitivity, probably resulted from the activity of two enzymes, a CH3-Hg+ hydrolase and a Hg2+ reductase.  相似文献   

14.
The microflora in strained rumen fluid did not methylate or volatilize 203Hg2+ at detectable rates. However, there was an exponential decay in the concentration of added CH3Hg+, which was attributed to demethylation. The major product of demethylation was metallic mercury (Hg0), and it was released as a volatile product from the reaction mixture. Demethylation occurred under both anaerobic and aerobic conditions. The rate of demethylation was proportional to the concentration of added CH3Hg+-Hg from 0.02 to 100 microgram of Hg per ml. The presence of HgCl2 had almost no inhibitory effect on the rate of cleavage of the carbon-mercury bond of CH2HgCl, but it completely inhibited volatilization of the Hg formed, when the concentration of HgCl2-Hg reached 100 micrograms/ml. Three of 11 species of anaerobic rumen bacteria catalyzed demethylation. These were Desulfovibrio desulfuricans, Selenomonas ruminantium, and Megasphaera elsdenii. None of the 11 species caused detectable methylation, and only two caused limited volatilization of Hg2+. Three species of bacteria out of 90 fresh aerobic isolates from rumen contents were demethylators: two were identified as Pseudomonas sp., and the third was a Micrococcus sp. Demethylation by the rumen microflora appeared to be carried out by both aerobic and anaerobic bacteria and, on the basis of Hg2+ sensitivity, probably resulted from the activity of two enzymes, a CH3-Hg+ hydrolase and a Hg2+ reductase.  相似文献   

15.
With no acceptable method for collecting fresh rumen fluid from zoo ruminants, it was proposed that fecal bacterial concentrations may be correlated with rumen bacteria. If so, fecal bacterial concentrations could be used to study both the effects of diet on rumen bacteria as well as rumen abnormalities. Total and cellulolytic bacterial concentrations were determined in whole rumen contents and feces of sheep using a most‐probable‐number (MPN) assay. In a Latin square design, four crossbred ewes were fed diets of 100% long or chopped orchardgrass hay (OH) and 60% ground or whole shelled corn plus 40% chopped OH. In a second trial, the sheep were fed a pelleted complete feed at varying levels of intake i.e., control at 2.0% of body weight and at 1.8, 1.6, and 1.2% of body weight. Higher total rumen bacterial concentrations (P<0.01) were found on the high concentrate diets as compared with the high forage diets. Grinding the corn also increased total bacterial concentrations (P<0.05). Fecal concentrations of total bacteria were higher (P<0.01) with the high concentrate diets. Chopping the forage decreased the concentration of fecal cellulolytic bacteria (P<0.05) but had no effect on their concentration in the rumen. An inverse linear relationship (P<0.01) was observed between total bacterial concentrations in the feces and diet intake. Although relationships were observed between the rumen and feces for total and cellulolytic bacterial concentrations, they were dependent on diet, particle size, and level of intake. Thus, fecal bacterial concentrations cannot be used to reliably predict rumen bacterial concentrations. Zoo Biol 27:100–108, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
Representative strains of anaerobic bacteria from human infections were used to evaluate broth media, gas mixtures, and inocula for use in developing a procedure for performing minimal inhibitory concentration antimicrobic susceptibility tests. Nine commercially available media, including two that were chemically defined, were tested. Tests were performed in atmospheres with carbon dioxide concentrations between 2.5 and 10% and also in the GasPak system (BBL) that had a disposable hydrogen-carbon dioxide generator. Growth curves on each organism grown in schaedler broth and a 5% carbon dioxide atmosphere were used to determine growth characteristics, equate time of the particular growth phases to turbidity readings, and determine the numbers of viable organisms present in the culture. Schaedler broth proved to be most advantageous in combination with an atmosphere of 5% carbon dioxide, 10% hydrogen, and 85% nitrogen. The growth curve studies yielded valuable data on the rapidity and quantity of growth under these conditions. We believe these data have provided information which can be used as the basis for developing a standardized procedure for antimicrobic susceptibility testing for anaerobic bacteria.  相似文献   

17.
Sodium is an obligate growth requirement for most currently recognized predominant species of rumen bacteria. The isoosmotic deletion of Na(+) from a nutritionally adequate defined medium completely eliminated growth of most species. Growth yields and rates were both a function of Na(+) concentration for Na(+)-requiring species, and Na(+) could not be replaced by Rb(+), Li(+), or Cs(+) when these ions were substituted for Na(+) at a concentration equivalent to an Na(+) concentration that supported abundant growth. Li(+), Cs(+), or Rb(+) was toxic at an Na(+)-replacing concentration (15 mM) but not at a K(+)-replacing concentration (0.65 mM). K(+) was also an obligate growth requirement for rumen bacteria in media containing Na(+) and K(+) as major monovalent cations, but K(+) could be replaced, for most species, by Rb(+). The quantities of Na(+) that support rapid and abundant growth of Na(+)-requiring rumen bacteria show that these organisms are slight halophiles. A growth requirement for Na(+) appears more frequent among nonmarine bacteria than has been previously believed.  相似文献   

18.
Effects of lactobacilli on yeast-catalyzed ethanol fermentations.   总被引:4,自引:1,他引:3       下载免费PDF全文
Normal-gravity (22 to 24 degrees Plato) wheat mashes were inoculated with five industrially important strains of lactobacilli at approximately 10(5), approximately 10(6), approximately 10(7), approximately 10(8), and approximately 10(9) CFU/ml in order to study the effects of the lactobacilli on yeast growth and ethanol productivity. Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus #3, Lactobacillus rhamnosus, and Lactobacillus fermentum were used. Controls with yeast cells but no bacterial inoculation and additional treatments with bacteria alone inoculated at approximately 10(7) CFU/ml of mash were included. Decreased ethanol yields were due to the diversion of carbohydrates for bacterial growth and the production of lactic acid. As higher numbers of the bacteria were produced (depending on the strain), 1 to 1.5% (wt/vol) lactic acid resulted in the case of homofermentative organisms. L. fermentum, a heterofermentative organism, produced only 0.5% (wt/vol) lactic acid. When L. plantarum, L. rhamnosus, and L. fermentum were inoculated at approximately 10(6) CFU/ml, an approximately 2% decrease in the final ethanol concentration was observed. Smaller initial numbers (only 10(5) CFU/ml) of L. paracasei or Lactobacillus #3 were sufficient to cause more than 2% decreases in the final ethanol concentrations measured compared to the control. Such effects after an inoculation of only 10(5) CFU/ml may have been due to the higher tolerance to ethanol of the latter two bacteria, to the more rapid adaptation (shorter lag phase) of these two industrial organisms to fermentation conditions, and/or to their more rapid growth and metabolism. When up to 10(9) CFU of bacteria/ml was present in mash, approximately 3.8 to 7.6% reductions in ethanol concentration occurred depending on the strain. Production of lactic acid and a suspected competition with yeast cells for essential growth factors in the fermenting medium were the major reasons for reductions in yeast growth and final ethanol yield when lactic acid bacteria were present.  相似文献   

19.
We compared the growth of 10 strains of rumen bacteria in an anaerobic medium reduced with cysteine hydrochloride, dithiothreitol, or titanium (III) citrate. The redox potential of medium reduced with cysteine hydrochloride was -167.8 mV; with dithiothreitol it was -175.8 mV; and with titanium(III) citrate it was -302.4 mV at a concentration of 5 X 10(-4) M titanium and -403.9 mV at 2 X 10(-3) M titanium. Maximum growth of the strains was generally lower with dithiothreitol or titanium(III) citrate than with cysteine hydrochloride, although growth was greater than in medium lacking an added reducing agent. Strains for which cysteine was required or markedly stimulatory grew only poorly with titanium(III) citrate. No strain grew in medium with sodium citrate as the energy source. Titanium(III) citrate could be used to reduce anaerobic media for some rumen bacteria if the exclusion of a sulfur-containing reducing agent is required.  相似文献   

20.
Biological hydrogen production from synthesis gas was carried out in batch culture. The phototrophic anaerobic bacterium, Rhodospirillum rubrum was used to oxidize CO and water to CO2 and hydrogen. The bacteria were grown under anaerobic conditions in liquid medium; also acetate was used as carbon source in presence of synthesis gas. Biological hydrogen production was catalysed by R. rubrum via the water–gas shift reaction. A light-dependent cell growth modelled with a desired rate of hydrogen production and CO uptake was determined. The effect of light intensity on microbial cell growth was also studied at 500, 1,000 and 1,500 m.cd. A complete conversion of CO to hydrogen and maximum light efficiency were obtained with an acetate concentration of 1 g/l and light intensity of 500 m.cd. Utilization of the carbon monoxide from the gas phase was often considered as a mass transfer limited process, which needed to diffuse through the gas–liquid interface and then further diffuse into liquid medium prior to reaction. The results from this study showed that maximum cell propagation and hydrogen production were achieved with a limited light intensity of 1,000 m.cd. It was also found that high-light intensity may interfere with cell metabolism. In low-light intensity and substrate concentration, no inhibition was observed, however at extreme conditions, non-competitive inhibition was identified. The adverse effect of high-light intensity was shown at 5,000 m.cd, where the CO conversion drastically dropped to as low as 21%. Maximum CO conversion of 98% and maximum yield of 86% with an acetate concentration of 1.5 g/l and a light intensity of 1,000 m.cd were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号