首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukotrienes (LTs) are known to be produced by macrophages when challenged with Leishmania, but it is not known whether these lipid mediators play a role in host defense against this important protozoan parasite. In this study, we investigated the involvement of LTs in the in vitro and in vivo response to Leishmania amazonensis infection in susceptible (BALB/c) and resistant (C3H/HePAS) mice. Pharmacologic or genetic deficiency of LTs resulted in impaired leishmanicidal activity of peritoneal macrophages in vitro. In contrast, addition of LTB4 increased leishmanicidal activity and this effect was dependent on the BLT1 receptor. LTB4 augmented NO production in response to L. amazonensis challenge, and studies with a NO synthesis inhibitor revealed that NO was critical for the enhancement of macrophage leishmanicidal activity. Interestingly, macrophages from resistant mice produced higher levels of LTB4 upon L. amazonensis challenge than did those from susceptible mice. In vivo infection severity, as assessed by footpad swelling following s.c. promastigote inoculation, was increased when endogenous LT synthesis was abrogated either pharmacologically or genetically. Taken together, these results for the first time reveal an important role for LTB4 in the protective response to L. amazonensis, identify relevant leishmanicidal mechanisms, and suggest that genetic variation in LTB4 synthesis might influence resistance and susceptibility patterns to infection.  相似文献   

2.
Diffuse cutaneous leishmaniasis (DCL) is a rare clinical manifestation of leishmaniasis, characterized by an inefficient parasite-specific cellular response and heavily parasitized macrophages. In Brazil, Leishmania (Leishmania) amazonensis is the main species involved in DCL cases. In the experimental model, recognition of phosphatidylserine (PS) molecules exposed on the surface of amastigotes forms of L. amazonensis inhibits the inflammatory response of infected macrophages as a strategy to evade the host immune surveillance. In this study, we examined whether PS exposure on L. amazonensis isolates from DCL patients operated as a parasite pathogenic factor and as a putative suppression mechanism of immune response during the infection. Peritoneal macrophages from F1 mice (BALB/c×C57BL/6) were infected with different L. amazonensis isolates from patients with localized cutaneous leishmaniasis (LCL) or DCL. DCL isolates showed higher PS exposure than their counterparts from LCL patients. In addition, PS exposure was positively correlated with clinical parameters of the human infection (number of lesions and time of disease) and with characteristics of the experimental infection (macrophage infection and anti-inflammatory cytokine induction). Furthermore, parasites isolated from DCL patients displayed an increased area in parasitophorous vacuoles (PV) when compared to those isolated from LCL patients. Thus, this study shows for the first time that a parasite factor (exposed PS) might be associated with parasite survival/persistence in macrophages and lesion exacerbation during the course of DCL, providing new insights regarding pathogenic mechanism in this rare chronic disease.  相似文献   

3.
In Leishmania amazonensis, kinetoplastid membrane protein-11 (KMP-11) expression increases during meta-cyclogenesis and is higher in amastigotes than in promastigotes, suggesting a role for this protein in the infection of the mammalian host. We show that the addition of KMP-11 exacerbates L. amazonensis infection in peritoneal macrophages from BALB/c mice by increasing interleukin (IL)-10 secretion and arginase activity while reducing nitric oxide (NO) production. The doses of KMP-11, the IL-10 levels and the intracellular amastigote loads were strongly, positively and significantly correlated. The increase in parasite load induced by KMP-11 was inhibited by anti-KMP-11 or anti-IL-10 neutralising antibodies, but not by isotype controls. The neutralising antibodies, but not the isotype controls, were also able to significantly decrease the parasite load in macrophages cultured without the addition of KMP-11, demonstrating that KMP-11-induced exacerbation of the infection is not dependent on the addition of exogenous KMP-11 and that the protein naturally expressed by the parasite is able to promote it. In this study, the exacerbating effect of KMP-11 on macrophage infection with Leishmania is for the first time demonstrated, implicating it as a virulence factor in L. amazonensis. The stimulation of IL-10 production and arginase activity and the inhibition of NO synthesis are likely involved in this effect.  相似文献   

4.
5.
Fibronectin (FN) is a large extracellular matrix protein involved in the endocytosis of several types of particles by different phagocytes. Here we investigated the role of FN in the entry and destruction of Leishmania amazonensis promastigotes (flagellated form) by murine resident peritoneal macrophages. We also studied the lateral mobility of this protein on the surface of the parasite cells using a immunogold technique. We compared the effects of addition and depletion of FN on infective and non-infective populations of Leishmania promastigotes. The invasion by the latter but not by the former, was increased by FN, and the uptake of these cells was more sensitive to FN depletion from the culture medium. We also observed enhanced killing of intracellular infective promastigotes upon FN addition to the macrophage cultures. Immunocytochemical localization of FN on the surface of the flagellates revealed that the parasite cells released bound FN by membrane shedding in a constitutive fashion. Therefore we conclude that FN removal by shedding may be part of a physiological mechanism by which the parasites evade intracellular destruction by host cells.  相似文献   

6.
Leishmania parasites infect macrophages, cells normally involved in innate defense against pathogens. Leishmania amazonensis and Leishmania major cause severe or mild disease, respectively, consistent with each parasite's ability to survive within activated macrophages. The mechanisms underlying increased virulence of L.?amazonensis are mostly unknown. We show that L.?amazonensis promotes its own survival by inducing expression of CD200, an immunoregulatory molecule that inhibits macrophage activation. L.?amazonensis does not form typical nonhealing lesions in CD200(-/-) mice and cannot replicate in CD200(-/-) macrophages, an effect reversed by exogenous administration of soluble CD200-Fc. The less virulent L.?major does not induce CD200 expression and forms small, self-healing lesions in both wild-type and CD200(-/-) mice. Notably, CD200-Fc injection transforms the course of L.?major infection to one resembling L.?amazonensis, with large, nonhealing lesions. CD200-dependent iNOS inhibition allows parasite growth in macrophages, identifying a mechanism for the increased virulence of L.?amazonensis.  相似文献   

7.
Membrane glycoconjugates on the Leishmania parasites, notably leishmanolysin and lipophosphoglycan, have been implicated in attachment and invasion of host macrophages. However, the function of parasite surface Ag 2 (PSA-2) and membrane proteophosphoglycan (PPG) has not been elucidated. In this study we demonstrate that native and recombinant Leishmania infantum PSA-2, which consists predominantly of 15 leucine-rich repeats (LRR) and a recombinant LRR domain derived from L. major PPG, bind to macrophages. The interaction is restricted to macrophages and appears to be calcium independent. We have investigated the PSA-2-macrophage interaction to identify the host receptor involved in binding and we show that binding of PSA-2 to macrophages can be blocked by Abs to the complement receptor 3 (CR3, Mac-1). Data derived from mouse macrophage studies were further confirmed using cell lines expressing human CR3, and showed that PSA-2 also binds to the human receptor. This is the first demonstration of a functional role for PSA-2. Our data indicate that in addition to leishmanolysin and lipophosphoglycan, parasite attachment and invasion of macrophages involve a third ligand comprising the LRRs shared by PSA-2 and PPG and that these interactions occur via the CR3.  相似文献   

8.
This study evaluated two vaccine candidates for their effectiveness in protecting BALB/c mice against Leishmania chagasi infection. These immunogenic preparations were composed of Leishmania amazonensis or Leishmania braziliensis antigenic extracts in association with saponin adjuvant. Mice were given three subcutaneous doses of one of these vaccine candidates weekly for three weeks and four weeks later challenged with promastigotes of L. chagasi by intravenous injection. We observed that both vaccine candidates induced a significant reduction in the parasite load of the liver, while the L. amazonensis antigenic extract also stimulated a reduction in spleen parasite load. This protection was associated with a suppression of both interleukin (IL)-10 and IL-4 cytokines by spleen cells in response to L. chagasi antigen. No change was detected in the production of IFN-γ. Our data show that these immunogenic preparations reduce the type 2 immune response leading to the control of parasite replication.  相似文献   

9.
Leishmania amazonensis induces a nonhealing infection in C3H mice, whereas infection with Leishmania major is self-healing. We found that C3H mice infected with L. amazonensis exhibited decreased IL-12 production, which could account for the susceptibility to this organism. However, exogenous IL-12 administration failed to induce a healing immune response. The failure of L. amazonensis-infected C3H mice to respond to IL-12 was associated with a specific defect in IL-12 receptor beta2 (IL-12Rbeta2) mRNA expression by CD4+ T cells. Furthermore, decreased IL-12Rbeta2 mRNA expression correlated with a decrease in the IL-12-signaling capacity of the lymph node (LN) cells. IL-4 did not contribute to susceptibility or down-regulation of the IL-12Rbeta2 subunit, because IL-4-/- mice remained susceptible to L. amazonensis infection, even after IL-12 administration, and CD4+ cells from infected IL-4-/- mice also had reduced expression of IL-12Rbeta2 mRNA. These results demonstrate that regulation of the IL-12 receptor, independent of IL-4, is a point of control for the immune response to leishmaniasis. In contrast to experimental L. major infections, where host genetics control susceptibility, these studies demonstrate that the lack of IL-12 responsiveness may be dictated by the pathogen, rather than the host.  相似文献   

10.
We investigated the role of the platelet activation factor (PAF) receptor (PAFR) in the outcome of infection with Leishmania amazonensis. PAFR deficient (PAFR(-/-)) mice were infected with L. amazonensis and the course of infection was followed. We found that PAFR(-/-) mice in the C57BL/6 background were more susceptible to infection with L. amazonensis than the wild-type controls, as seen both by lesion size and parasite number at the site of infection. Interferon (IFN)-gamma production was delayed in PAFR(-/-) mice, and lower levels of Ccl5 were found in lesions. Expression of nitric oxide synthase-2 mRNA was found impaired in PAFR(-/-) associated with higher levels of arginase-1 mRNA. Moreover, higher levels of antibodies were produced in response to L. amazonensis by PAFR(-/-) mice. We conclude that signaling through the PAFR is essential for the ability of the murine host to control L. amazonensis infection by driving an adequate immune response.  相似文献   

11.
Abstract For the cis and trans stereoisomers of the synthetic anti-microtubule compound tubulozole, at micromolar concentrations, tubulozole-C is cytotoxic to mammalian cells whereas tubulozole-T is not. The effect of tubulozoles on the parasitic protozoan Leishmania was tested. For the promastigote stage of L. mexicana amazonensis , both isomers inhibited parasite growth. For the amastigote stage of L. mexicana amazonensis and L. major , within murine J774 macrophage line as host cells in vitro, tubulozole-T reduced the infective index. Despite the observation of macrophage cytotoxicity of tubulozole-T, this compound may be a potentially useful and novel anti-leishmanial drug.  相似文献   

12.
Leishmania and other parasites display several mechanisms to subvert host immune cell function in order to achieve successful infection. The ATP receptor P2X7, an agonist-gated cation channel widely expressed in macrophages and other cells of the immune system, is also coupled to inflammasome activation, IL-1 beta secretion, production of reactive oxygen species, cell death and the induction of the permeabilization of the plasma membrane to molecules of up to 900 Da. P2X7 receptors can function as an effective microbicidal triggering receptor in macrophages infected with several microorganisms including Mycobacteria tuberculosis, Chlamydia and Leishmania. We have previously shown that its expression is up-regulated in macrophages infected with L. amazonensis and that infected cells also display an increase in P2X7-induced apoptosis and membrane permeabilization to some anionic fluorescent dyes. In an independent study we recently showed that the phenomenon of macrophage membrane permeabilization can involve at least two distinct pathways for cations and anions respectively. Here, we re-addressed the effects of ATP-induced P2X7-associated phenomena in macrophages infected with L. amazonensis and demonstrated that the P2X7-associated dye uptake mechanisms are differentially modulated. While the membrane permeabilization for anionic dyes is up-modulated, as previously described, the uptake of cationic dyes is strongly down-modulated. These results unveil new characteristics of two distinct permeabilization mechanisms associated with P2X7 receptors in macrophages and provide the first evidence indicating that these pathways can be differentially modulated in an immunologically relevant situation. The possible importance of these results to the L. amazonensis escape mechanism is discussed.  相似文献   

13.
The immune mechanisms that underlie resistance and susceptibility to leishmaniasis are not completely understood for all species of Leishmania. It is becoming clear that the immune response, the parasite elimination by the host and, as a result, the outcome of the disease depend both on the host and on the species of the infecting Leishmania. Here, we analyzed the outcome of the infection of BALB/c mice with L. guyanensis in vivo and in vitro. We showed that BALB/c mice, which are a prototype of susceptible host for most species of Leishmania, dying from these infections, develop insignificant or no cutaneous lesions and eliminate the parasite when infected with promastigotes of L. guyanensis. In vitro, we found that thioglycollate-elicited BALB/c peritoneal macrophages, which are unable to eliminate L. amazonensis without previous activation with cytokines or lipopolysaccharide, can kill L. guyanensis amastigotes. This is the first report showing that infection of peritoneal macrophages with stationary phase promastigotes efficiently triggers innate microbicidal mechanisms that are effective in eliminating the amastigotes, without exogenous activation. We demonstrated that L. guyanensis amastigotes die inside the macrophages through an apoptotic process that is independent of nitric oxide and is mediated by reactive oxygen intermediates generated in the host cell during infection. This innate killing mechanism of macrophages may account for the resistance of BALB/c mice to infection by L. guyanensis.  相似文献   

14.
15.
16.
While CBA/J mice fail to be permissive to Leishmania amazonensis-driven pathogenic processes, they heal easily following Leishmania major infection. The early-phase events are crucial to the outcome of Leishmania infection and it is known that macrophages (Mphi) are important in infection control. In the present study we investigated the role of Mphi in driving CBA/J susceptibility to L. amazonensis. We performed kinetic studies and compared the capacity of L. amazonensis and L. major to infect Mphi. There was no difference in percentages of infection or parasite burden for 6 h between the two groups. In contrast, after 12 h we observed that infection was about twice as high in L. amazonensis- than in L. major-infected Mphi. In addition, rIFN-gamma added to the cultures induced nitric oxide (NO) production, and did not modify L. amazonensis infection, although the percentage of L. major infection was significantly reduced. This reduction in L. major infection is a TNF-alpha dependent mechanism as L. major-infected Mphi expressed twice as much TNF-alpha mRNA as L. amazonensis-infected cells, and anti-TNF-alpha reversed the IFN-gamma effect. Moreover, rTNF-alpha plus IFN-gamma were able to significantly reduce the percentage of L. amazonensis-infected cells but not to the same extent as in L. major infection. Despite having higher NO production than IFN-gamma-treated cells, AMG addition to IFN-gamma-plus TNF-alpha-treated cells only partially reversed the inhibition in L. major, but not in L. amazonensis infection. Thus, in this study, we demonstrated that L. amazonensis both inactivated and resisted innate and IFN-gamma-induced Mphi killing mechanisms, indicating that the nature of the parasite and its interaction with Mphi could determine immune response polarization.  相似文献   

17.
18.
Protozoan parasites of Leishmania spp. invade macrophages as promastigotes and differentiate into replicative amastigotes within parasitophorous vacuoles. Infection of inbred strains of mice with Leishmania major is a well-studied model of the mammalian immune response to Leishmania species, but the ultrastructure and biochemical properties of the parasitophorous vacuole occupied by this parasite have been best characterized for other species of Leishmania. We examined the parasitophorous vacuole occupied by L. major in lymph nodes of infected mice and in bone marrow-derived macrophages infected in vitro. At all time points after infection, single L. major amastigotes were wrapped tightly by host membrane, suggesting that amastigotes segregate into separate vacuoles during replication. This small, individual vacuole contrasts sharply with the large, communal vacuoles occupied by Leishmania amazonensis. An extensive survey of the literature revealed that the single vacuoles occupied by L. major are characteristic of those formed by Old World species of Leishmania, while New World species of Leishmania form large vacuoles occupied by many amastigotes.  相似文献   

19.
In IL-5 transgenic mice (C3H/HeN-TgN(IL-5)-Imeg), in which 50% of peripheral blood leukocytes are eosinophils, the development of infection by Leishmania amazonensis was clearly suppressed. To determine mechanistically how this protozoan parasite is killed, we performed in vitro killing experiments. Either IL-4 or IFN-gamma effectively stimulated eosinophils to kill Leishmania amazonensis promastigotes, and most of the killing was inhibited by catalase but not by the NO inhibitor L-N5-(1-iminoethyl)-ornithine, suggesting that hydrogen peroxide is responsible for the killing of L. amazonensis by eosinophils. There was no significant degranulation of eosinophils in the culture, because eosinophil peroxidase was not detected in culture supernatants when L. amazonensis promastigotes were killed by activated eosinophils. Such resistance was also observed in BALB/c mice, which are highly susceptible to L. amazonensis. Expression plasmids for IL-4, IL-5, and IFN-gamma were transferred into muscle by electroporation in vivo starting 1 week before infection. Expression plasmid for IL-5 was most effective in slowing the development of infection among three expression plasmids. Expression plasmid for IL-4 was slightly effective and that for IFN-gamma had no effect on the progress of disease. These results suggest that IL-5 gene transfer into muscle by electroporation is useful as a supplementary protection method against L. amazonensis infection.  相似文献   

20.
Leishmania, an obligate intracellular parasite, binds several receptors to trigger engulfment by phagocytes, leading to cutaneous or visceral disease. These receptors include complement receptor 3 (CR3), used by promastigotes, and the Fc receptor (FcR), used by amastigotes. The mechanisms mediating uptake are not well understood. Here we show that Abl family kinases mediate both phagocytosis and the uptake of Leishmania amazonensis by macrophages (Ms). Imatinib, an Abl/Arg kinase inhibitor, decreases opsonized polystyrene bead phagocytosis and Leishmania uptake. Interestingly, phagocytosis of IgG-coated beads is decreased in Arg-deficient Ms, while that of C3bi-coated beads is unaffected. Conversely, uptake of C3bi-coated beads is decreased in Abl-deficient Ms, but that of IgG-coated beads is unaffected. Consistent with these results, Abl-deficient Ms are inefficient at C3bi-opsonized promastigote uptake, and Arg-deficient Ms are defective in IgG1-opsonized amastigote uptake. Finally, genetic loss of Abl or Arg reduces infection severity in murine cutaneous leishmaniasis, and imatinib treatment results in smaller lesions with fewer parasites than in controls. Our studies are the first to demonstrate that efficient phagocytosis and maximal Leishmania infection require Abl family kinases. These results highlight Abl family kinase-mediated signaling pathways as potential therapeutic targets for leishmaniasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号