共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana 总被引:4,自引:0,他引:4
Nanjo T Kobayashi M Yoshiba Y Kakubari Y Yamaguchi-Shinozaki K Shinozaki K 《FEBS letters》1999,452(3):205-210
The location of tryptophan residues in the actin macromolecule was studied on the basis of the known 3D structure. For every tryptophan residue the polarity and packing density of their microenvironments were evaluated. To estimate the accessibility of the tryptophan residues to the solvent molecules it was proposed to analyze the radial dependence of the packing density of atoms in the macromolecule about the geometric center of the indole rings of the tryptophan residues. The proposed analysis revealed that the microenvironment of tryptophan residues Trp-340 and Trp-356 has a very high density. So these residues can be regarded as internal and inaccessible to solvent molecules. Their microenvironment is mainly formed by non-polar groups of protein. Though the packing density of the Trp-86 microenvironment is lower, this tryptophan residue is apparently also inaccessible to solvent molecules, as it is located in the inner region of macromolecule. Tryptophan residue Trp-79 is external and accessible to the solvent. All residues that can affect tryptophan fluorescence were revealed. It was found that in the close vicinity of tryptophan residues Trp-79 and Trp-86 there are a number of sulfur atoms of cysteine and methionine residues that are known to be effective quenchers of tryptophan fluorescence. The most essential is the location of SG atom of Cys-10 near the NE1 atom of the indole ring of tryptophan residue Trp-86. On the basis of microenvironment analysis of these tryptophan residues and the evaluation of energy transfer between them it was concluded that the contribution of tryptophan residues Trp-79 and Trp-86 must be low. Intrinsic fluorescence of actin must be mainly determined by two other tryptophan residues--Trp-340 and Trp-356. It is possible that the unstrained conformation of tryptophan residue Trp-340 and the existence of aromatic rings of tyrosine and phenylalanine and proline residues in the microenvironments of tryptophan residues Trp-340 and Trp-356 are also essential to their blue fluorescence spectrum. 相似文献
12.
S. Y. Shin Y. S. Kim I. S. Kim Y. H. Kim H. M. Park H. S. Yoon 《Biologia Plantarum》2014,58(3):456-468
In chloroplasts and mitochondria, antioxidant mechanisms include the ascorbate-glutathione cycle, and monodehydroascorbate reductase (MDHAR) is important for regeneration of ascorbate (AsA) from monodehydroascorbate (MDHA). To improve detoxification of reactive oxygen species (ROS), we established a construct of the MDHAR gene from Brassica rapa fused to the targeting signal peptides of Pisum sativum glutathione reductase (GR), which was controlled by a stress-inducible SWPA2 promoter, and introduced this expression system into Arabidopsis thaliana. Transgenic (TG) plants overexpressing BrMDHAR targeted to chloroplasts and mitochondria through signal peptides showed an elevated MDHAR activity and an increased ratio of AsA to dehydroascorbate (DHA) when compared to wild-type (WT) plants under a freezing stress. These led to increased photosynthetic parameters, redox homeostasis, and biomass in TG plants when compared to the WT plants. Our results suggest that the overexpression of the BrMDHAR gene targeted to chloroplasts and mitochondria conferred an enhanced tolerance against the freezing stress, and a stress adaptation of dual-targeted BrMDHAR was better than that of single BrMDHAR. 相似文献
13.
Characterization of the yeast copper-inducible promoter system in Arabidopsis thaliana 总被引:6,自引:0,他引:6
Inducible promoters or gene-switches are used to both spatially and temporally regulate gene expression. Such regulation can provide information concerning the function of a gene in a developmental context as well as avoid potential harmful effects due to overexpression. A gfp construct under the control of a copper-inducible promoter was introduced into Arabidopsis thaliana (L.) Heynh. and the regulatory parameters of this inducible promoter were determined. Here, we describe the time-course of up- and down-regulation of GFP expression in response to copper level, the optimal regulatory levels of copper, and the tissue specificity of expression in three transgenic lines. We conclude that the copper-inducible promoter system may be useful in regulating the time and location of gene expression in A. thaliana. 相似文献
14.
15.
Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. 总被引:8,自引:0,他引:8
F Van Breusegem L Slooten J M Stassart T Moens J Botterman M Van Montagu D Inzé 《Plant & cell physiology》1999,40(5):515-523
Transgenic maize (Zea mays L.) plants have been generated by particle gun bombardment that overproduce an Arabidopsis thaliana iron superoxide dismutase (FeSOD). To target this enzyme into chloroplasts, the mature Fesod coding sequence was fused to a chloroplast transit peptide from a pea ribulose-1,5-bisphosphate carboxylase gene. Expression of the chimeric gene was driven by the CaMV 35S promoter. Growth characteristics and in vitro oxidative stress tolerance of transgenic lines grown in control and chilling temperatures were evaluated. The transgenic line with the highest transgenic FeSOD activities had enhanced tolerance toward methyl viologen and had increased growth rates. 相似文献
16.
17.
18.
19.
The functions of cytosolic heat shock protein AtHsp90.3 in response to heavy metal stress were characterized by using expression
of AtHsp90.3 gene in yeast and Arabidopsis thaliana. AtHsp90.3 supported the Saccharomyces cerevisiae Hsp90 knockout strain R0005 growth and maintaining cells membrane integrity under cadmium and arsenic stresses, which was
compatible with the components of ScHsc82 machinery. However, constitutive overexpression of AtHsp90.3 in Arabidopsis impaired plant tolerance to Cd stress with lower germination rate and shorter root length, decreased contents of phytochelatins
(PCs) and glutathione (GSH), inhibited activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), and
increased content of malondialdehyde (MDA). These results suggested that proper homeostasis of Hsp90 was critical for cellular
response and/or tolerance to heavy metal stress in plants. 相似文献
20.
Zhang Yue Shi Xiaomeng Lin Shizhuo Wang Jianping Tang Meiling Huang Jianfeng Gao Taiping Zhang Hongxia Song Zhizhong 《Plant Growth Regulation》2022,98(1):39-49
Plant Growth Regulation - As one of the most abundant ions in cells, sufficient amount of potassium (K+) is closely related to plant growth and development and contributes to plant tolerance to... 相似文献