首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
OxyR and SoxRS Regulation of fur   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

4.
In previous experiments we were able to separate, using a nondestructive separation technique, culturable and nonculturable bacteria, from a Luria-Bertani (LB) medium culture of Escherichia coli incubated for 48 h. We observed in the nonculturable bacterial population an increase in oxidative damage and up-induction of most defenses against reactive oxygen species (ROS), along with a decrease in cytoplasmic superoxide dismutases. In this study, using the same separation technique, we separated into two subpopulations a 10-h LB medium culture containing only culturable bacteria. For the first time, we succeeded in associating physical separation with physiological differences. Although the levels of defense against ROS (RpoS, RpoH, OxyR, and SoxRS regulons) and oxidative damage (carbonyl contents) were apparently the same, we found that bacteria in one subpopulation were more sensitive to LB medium starvation and to various stresses, such as phosphate buffer starvation, heat shock, and hydrogen peroxide exposure. Based on these results, we suggest that these physiological differences reflect uncharacterized bacterial modifications which do not directly involve defenses against ROS.  相似文献   

5.
The enteric pathogen Salmonella enterica is exposed to a number of stressful environments during its life cycle within and outside its various hosts. During intestinal colonisation Salmonella is successively exposed to acid pH in the stomach, to the detergent-like activity of bile, to decreasing oxygen supply, to the presence of multiple metabolites produced by the normal gut microflora and finally it is exposed to cationic antimicrobial peptides present on the surface of epithelial cells. There are four major regulators controlling relevant stress responses in Salmonella, namely RpoS, PhoPQ, Fur and OmpR/EnvZ. Except for Fur, inactivation of genes encoding the other stress regulators results in attenuated virulence and such mutants can therefore be considered as vaccine candidates. In contrast, a decrease in oxygen supply monitored by Fnr and ArcAB, or oxidative stress controlled by OxyR and SoxRS is not regarded as a stress associated with host colonisation since inactivation of either of these systems does not result in reductions in colonisation. The role of quorum-sensing through luxS and sdiA is also considered as a regulator of virulence and colonisation.  相似文献   

6.
7.
Li K  Hein S  Zou W  Klug G 《Journal of bacteriology》2004,186(20):6800-6808
Mutants with defects in components of the glutathione-glutaredoxin (GSH/Grx) system of Rhodobacter capsulatus were constructed to study its role in defense against oxidative stress and the redox-dependent formation of photosynthetic complexes. The lack of the glutaredoxin 3 gene (grxC) or the glutathione synthetase B gene (gshB) resulted in lower growth rates under aerobic conditions and higher sensitivity to oxidative stress, confirming the role of the GSH/Grx system in oxidative stress defense. Both mutants are highly sensitive to disulfide stress, indicating a major contribution of the GSH/Grx system to the thiol-disulfide redox buffer in the cytoplasm. Like mutations in the thioredoxin system, mutations in the GSH/Grx system affected the formation of photosynthetic complexes, which is redox dependent in R. capsulatus. Expression of the genes grxC, gshB, grxA for glutaredoxin 1, and gorA for glutathione reductase, all encoding components of the GSH/Grx system, was not induced by oxidative stress. Other genes, for which a role in oxidative stress was established in Escherichia coli, acnA, fpr, fur, and katG, were strongly induced by oxidative stress in R. capsulatus. Mutations in the grxC, and/or gshB, and/or trxC (thioredoxin 2) genes affected expression of these genes, indicating an interplay of the different defense systems against oxidative stress. The OxyR and the SoxRS regulons control the expression of many genes involved in oxidative stress defense in E. coli in response to H2O2 and superoxide, respectively. Our data and the available genome sequence of R. capsulatus suggest that a SoxRS system is lacking but an alternative superoxide specific regulator exists in R. capsulatus. While the expression of gorA and grxA is regulated by H2O2 in E. coli this is not the case in R. capsulatus, indicating that the OxyR regulons of these two species are significantly different.  相似文献   

8.
9.
Oxidative stress.   总被引:2,自引:0,他引:2  
  相似文献   

10.
Oxidative stress is strongly implicated in a number of diseases, such as rheumatoid arthritis, inflammatory bowel disorders, and atherosclerosis, and its emerging as one of the most important causative agents of mutagenesis, tumorigenesis, and aging. Recent progress on the genetics and molecular biology of the cellular responses to oxidative stress, primarily in Escherichia coli and Salmonella typhimurium, is summarized. Bacteria respond to oxidative stress by invoking two distinct stress responses, the peroxide stimulon and the superoxide stimulon, depending on whether the stress is mediated by peroxides or the superoxide anion. The two stimulons each contain a set of more than 30 genes. The expression of a subset of genes in each stimulon is under the control of a positive regulatory element; these genes constitute the OxyR and SoxRS regulons. The schemes of regulation of the two regulons by their respective regulators are reviewed in detail, and the overlaps of these regulons with other stress responses such as the heat shock and SOS responses are discussed. The products of Oxy-R- and SoxRS-regulated genes, such as catalases and superoxide dismutases, are involved in the prevention of oxidative damage, whereas others, such as endonuclease IV, play a role in the repair of oxidative damage. The potential roles of these and other gene products in the defense against oxidative damage in DNA, proteins, and membranes are discussed in detail. A brief discussion of the similarities and differences between oxidative stress responses in bacteria and eukaryotic organisms concludes this review.  相似文献   

11.
12.
13.
14.
15.
Burkholderia pseudomallei, a pathogenic gram‐negative bacterium, causes the severe human disease melioidosis. This organism can survive in eukaryotic host cells by escaping reactive oxygen species via the regulation of stress responsive sigma factors, including RpoS. In B. pseudomallei, RpoS has been reported to play a role in the oxidative stress response through enhanced activity of OxyR and catalase. In this study, the RpoS dependent oxidative stress responsive system was further characterized using comparative proteomic analysis. The proteomic profiles of wild‐type B. pseudomallei following exposure to H2O2 and between wild‐type and the rpoS mutant strains were analyzed. Using stringent criteria, 13 oxidative responsive proteins, eight of which are regulated by RpoS, were identified with high confidence. It was observed that ScoA, a subunit of the SCOT enzyme not previously shown to be involved directly in the oxidative stress response, is significantly down‐regulated after hydrogen peroxide treatment. ScoA and ScoB have been predicted to be organized in a single operon using computational methods: in this study it was confirmed by RT‐PCR that these genes are indeed co‐transcribed as a single mRNA. The present study is the first to report a role for RpoS in the down‐regulation of SCOT expression in response to oxidative stress in B. pseudomallei.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号