首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pectoral fin girdle was the first element of the fins to develop in Sparus aurata. By 3·1mm L N (notochord length) the cleithrum was ossified and the cartilaginous caracoid-scapula was present. The fin was fully developed at 11·6 mm L S (standard length) and by 16·0 mm L S most elements of the fin were ossified. The pelvic fins were the last pair to develop and rudiments of these were first detected at 7·9 mm L S. The pelvic fin and girdle were completely formed and ossified at 16·0 mm L S. The development of dorsal and anal fins began at c. 6·5–7·0 mm L S with the formation of 10 cartilaginous dorsal proximal radials and eight cartilaginous ventral proximal radials. The three cartilaginous predorsals (supraneurals) appeared at 7·7 mm L S and the ossification of dorsal and anal proximal and distal radials began, respectively, at 10·5 mm L S and 11·3 mm L S. Ossified structures in the fins were also classified according to their origin, as being either dermal or endochondral. Finally the chronology of appearance of fin structures in S. aurata was compared with that reported for other Sparidae, Engraulidae and Haemulidae.  相似文献   

2.
The osteological development of the vertebral column and fins in shi drum Umbrina cirrosa was studied in order to improve knowledge for its introduction in Mediterranean aquaculture. The osteological development was studied in 171 individuals, of total length (LT) from 2·7 to 30·2 mm that were reared under the mesocosm technique. Vertebral ontogeny starts at 3·4 and 4·0 mm LT, with the formation of the first cartilaginous neural and haemal arches, and spines, respectively, and is completed with the full attainment of epicentrals (12·5 mm LT). The formation of vertebral centra occurs between 4·1 and 7·4 mm LT. Pectoral supports are the first fin elements to develop (3·0 mm LT), followed by those of the caudal fin (3·8 mm LT), pelvic fin (3·9 mm LT) and finally by those of the dorsal and anal fins (4·5 mm LT). The caudal fin is the first to develop fin rays and attain the full count of principal fin rays (4·5–6·8 mm LT), but the last to be fully completed with the formation of procurrent fin rays (6·9–17·5 mm LT). The next fins starting to present rays are the dorsal (5·3 mm LT) and the pectoral fins (5·6 mm LT), while the anal and pelvic fins are the last (5·7 mm LT). Following the caudal principal fin rays (6·8 mm LT), the dorsal, anal (6·9 mm LT), pelvic (7·4 mm LT) and pectoral fins (9·8 mm LT) are the next with fully completed ray counts. Aggregation of qualitative changes, such as the appearance of cartilages, the beginning and the complement of the ossification process and the full complement of elements in U. cirrosa were measured as cumulative frequency counts. These measurements reveal three ontogenetic intervals: one very developmentally active period during early life stages (from 3 to 5·9 mm LT), a second slower developmental period (from 6·0 to 8·9 mm LT) and finally a period of ontogeny more focused on structure refinement up to metamorphosis and settlement (>9·0 mm LT).  相似文献   

3.
A new stargazer,Selenoscopus turbisquamatus, is described from 30 specimens from the Kyushu-Palau Ridge, the coasts of Kii Peninsula, Japan, and the Norfolk Ridge, northern Tasman Sea. The species appears to be most closely related to the genusUranoscopus in having two dorsal fins, a spinous dorsal fin consisting of feeble spines, a stout cleithral spine, an externally visible pelvic spur, two supracleithral spines, and no postcleithrum, but differs from it in having a smooth posterior margin of the gill flap, uniserial dentary teeth, random arrangement of body scales, no subopercular spine, an intervention of the pterosphenoid (=alisphenoid) between the frontal and the parasphenoid, and the first and second haemal spines depressed on the centra. A new genus,Selenoscopus, is therefore proposed, based on these characters.  相似文献   

4.
美洲鲥胚胎及仔稚鱼的发育   总被引:5,自引:0,他引:5  
对美洲鲥(Alosa sapidissima)早期生活史阶段的生长发育特征进行了观察和测量, 描述了胚胎和仔、稚鱼的生长发育特征。美洲鲥受精卵球形、无油球, 为沉性卵, 卵径2.85-3.28 mm。在水温20.3℃-21.9℃孵化条件下, 经过82h 孵化出膜, 根据其胚胎发育过程的形态特征, 胚胎发育分为受精卵、卵裂期、囊胚期、原肠胚期、神经胚期、器官形成期和出膜期7 个发育阶段。美洲鲥初孵仔鱼全长为(8.56±0.36) mm, 其卵黄囊体积为(4.57±0.77) mm3。1 日龄仔鱼脑部发育明显, 口张开, 肛门开通, 胸鳍形成。2 日龄仔鱼卵黄囊体积(0.71±0.23)mm3, 只有刚孵化的15.54%。3 日龄仔鱼经过1d 的混合营养期, 卵黄被完全吸收, 4 日龄仔鱼完全营外源性营养, 卵黄囊的体积(V)随孵化时间(h)的变化方程为V=4.1583e?0.0356h(R2=0.9901)。此后, 背鳍鳍条、尾鳍鳍条、臀鳍鳍条和腹鳍鳍条相继在晚期仔鱼出现, 9 日龄仔鱼尾椎开始弯曲, 21 日龄仔鱼尾椎弯曲完成。27 日龄鱼鳞开始形成, 到33 日龄稚鱼全身披鳞, 个体发育进入幼鱼期, 仔稚鱼期间的生长模型方程为: TL=0.0049D2+0.5091D+9.2578 (R2=0.9885, TL 为全长, D 为日龄)。    相似文献   

5.
The ontogeny of the developmental stages of the hake Merluccius hubbsi is described. Fish larvae and post-transitional juveniles were collected in the Nor-Patagonian area from 1989 to 2004. The opening of the mouth and the pigmentation of the eyes are coincident with yolk resorption, finishing the yolk-sac stage. This species presents pigmentation on the head, trunk and tail typical of gadiform larvae. Pectoral fin development is completed during the transformation stage. The post-transitional juvenile stage begins when the fin-ray complements are complete and squamation begins. The fins become fully formed in the following sequence: pelvic fins, first dorsal fin, second dorsal and anal fins together, caudal fin and pectoral fins. The caudal complex is totally developed in larvae of 22·0–23·0 mm standard lengths ( L S) and all vertebral elements are first observed in larvae of 8·5 mm L S. The rate of development of M. hubbsi observed in this study could be faster than the rates reported for other species of Merluccius by different authors.  相似文献   

6.
The morphology of the digestive system was useful to distinguish the larvae of Stolephorus baganensis and Thryssa kammalensis before the full development of their dorsal and anal fins. The relative positions of these fins, the length of the anal fin, and body depth, were good criteria for identifying individuals >10·0 mm L S. For both species, the relative growth of the ten morphometric characters studied was best explained by linear piecewise regressions indicating inflection in allometry at specific standard lengths. Most of these sudden changes in growth rate occurred between 6·9 and 10·0 mm L S for S. baganensis and between 5·8 and 8·9 mm L S for T. kammalensis . Double-centred principal component analysis (PCA) confirmed important changes in the external morphology of both species during this transition period. Prior to this period, the main parameters characterizing the global morphological changes of both species were the length and position of dorsal and anal fins whereas they were body depth and eye diameter (only in S. baganensis ) for larger specimens. Complete development of scales did not appear as a suitable criterion to define the end of the larval period, which, instead, was set at the size at which larvae presented an adult-like pigmentation (respectively 35·0 mm L S and 55·0 mm L S in S. baganensis and T. kammalensis ).  相似文献   

7.
Bluegill Lepomis macrochirus showed intraspecific morphological and behavioural differences dependent on the environment. Pelagic L. macrochirus had more fusiform bodies, a higher pectoral fin aspect ratio, a larger spiny dorsal fin area and pectoral fins located farther from the centre of mass than littoral L. macrochirus (P < 0·05). The shape of the body and pectoral fins, in particular, were suggestive of adaptation for sustained high-speed and economical labriform swimming. Littoral L. macrochirus had a deeper and wider body, deeper caudal fins and wider mouths than pelagic L. macrochirus (P < 0·05). Additionally, the soft dorsal, pelvic, anal and caudal fins of littoral L. macrochirus were positioned farther from the centre of mass (P < 0·05). The size and placement of these fins suggested that they will be effective in creating turning moments to facilitate manoeuvring in the macrophyte-dense littoral habitat.  相似文献   

8.
In the larval bester, a hybrid sturgeon of beluga Huso huso and sterlet Acipenser ruthenus, development of cartilage around the notochord began 7 days post hatch (dph) (14·0 mm, total length, LT). The vertebral cartilage develops in the following sequence: basidorsals and basiventrals, neural canals, neural spines and ribs. The development of ribs remained incomplete in the largest specimen (181 dph, 179 mm LT) that was examined. Endoskeletal development of the fins began 4 dph for the dorsal and anal fins, 6 dph for the pectoral fin and 10 dph for the caudal and pelvic fins. Complete elements of all fins were observed by 91 dph and complete ossification of fin rays was observed by 122 dph in the double‐stained specimens. Observation of the histological sections, however, suggested that ossification occurred soon after the formation of the organic matrix in the fin rays. Dorsal scutes were first visible by 25 dph, followed by the lateral and ventral scutes, which were visible by 37 and 44 dph, respectively. The number of scutes was fixed at 44, 59 and 91 dph and ossification was complete by 59 (dorsal) and 91 dph (lateral and ventral scutes) in the double‐stained specimens. Ossification occurred soon after the formation of the scute organic matrix in the histological sections. Four types of scales were observed in the H. huso×A. ruthenus hybrid. Median predorsal, preanal and small scales on the anterior section of the head were visible by 59 dph. Scales on the caudal fin were visible by 91 dph and a variable assemblage of scales anterior to the anal fin was visible by 122 dph. Both the scutes and scales developed in a process that is similar to that of intramembranous ossification.  相似文献   

9.
The development of cartilaginous structures in cultured sea bream Sparus aurata larvae and the timing of their ossification was studied. In cultivated sea bream larvae the first cartilaginous structure to be identified was hypural 1 at 4.1 mm notochord length ( L N). By 5.3 mm L N, prior to the onset of ossification, it was possible to distinguish the following cartilaginous structures: all 23 neural arches, all 13 haemal arches and two of the four pairs of parapophyses. The neural arches 1–4 and 15–23 were formed on the notochord and elongated dorsally, while neural arches 5–14 appeared on the dorsal side of the spinal cord and elongated ventrally. Initiation of ossification occurred at 5.7–6.0 mm standard length ( L S) when the cartilaginous ontogeny of the vertebral column was completed. Ossification was coincident with dorsal flexion at the posterior end of the notochord and occurred in a sequential manner: (1) dorsoanteriorly, the cartilaginous neural arches and the centra were the first structures to ossify; (2) ventrad at the centre, at 7.0–7.5 mm L S; (3) posteriorly at 7.1 mm L S the hypural complex and urostyle (24th centrum) were ossified; and (4) dorsad at the centre (neural arches and spines).  相似文献   

10.
The present study was undertaken to establish the normal, healthy features of morphological structures at various developmental stages as achieved under well-defined environmental culture conditions (temperature between 16 and 21°C, salinity 36 ppt, pH around 7.6, and oxygen saturation over 95%) common in aquaculture of the species. The pectoral fin supports began to develop at 2.90 mm total length (TL), followed by those of dorsal fins at 5.5 mm TL, caudal fins at 5.6 mm TL, pelvic fins at 5.9 mm TL and anal fins at 6.0 mm TL. The pelvic fins appeared fully at 7.4 mm TL. Development of dorsal lepidotrichia was first observed at 6.9 mm TL, attaining their final number at 7.6 mm TL. The dorsal spines first appeared at 6.5 mm TL and were complete at 7.4 mm TL. The anal lepidotrichia appeared during the development phase from 6.8 to 8.6 mm TL. At 5.6 mm TL, the upward flexion of the urostyle was initiated. The caudal lepidotrichia formed within the primordial fin at 5.6 mm TL and reached the final count at 7.4 mm TL. The caudal dermatotrichia first appeared at 7.3 mm TL and all forms were observed by 15.5 mm TL. The development pattern of fin supports found in Pagrus pagrus is quite similar to that described for other Sparid species.  相似文献   

11.
《Journal of morphology》2017,278(6):848-864
The median fins in extant actinopterygians are the product of millions of years of evolution. During this time, different developmental patterns for the dorsal and anal fins emerged leading to a high variation in median fin morphology and ontogeny. In this study, the development of anal and dorsal fins in atheriniforms is described and its consequences for the current phylogenetic hypothesis are discussed. Developmental series of five atheriniform species were investigated using clearing and staining as well as antibody staining. The skeletal elements of the second dorsal fin and the anal fin emerge in a bidirectional pattern. The first dorsal fin, however, arises separately in front of the second dorsal fin after this one is almost completely formed. The pterygiophores of the first dorsal fin, including the interdorsal pterygiophores, develop from caudal to rostral, but the fin‐spines of the first dorsal fin form in the opposite direction. This new mode of fin development has been found in all examined atheriniform species with two dorsal fins. Several morphological characters of atheriniforms, including interdorsal pterygiophores, are also found in one other taxon: the Mugiliformes. Thus, several dorsal fin characteristics may provide evidence for a closer relationship of these two taxa.  相似文献   

12.
The developmental sequence of morphological characteristics related to swimming and feeding functions was investigated in hatchery-reared larvae and juveniles ofSebastes schlegeli, a viviparous scorpaenid. The fish were extruded at an early larval stage, when the mean body size was 6.23 mm TL. Fin-ray rudiments became visible at 9.0 mm TL in the dorsal and anal fins, at 8.0 mm TL in the pectoral and pelvic fins and 6.0 mm TL (size at extrusion) in the caudal fin. Completion of segmentation of soft rays in the dorsal and anal fins was attained by 14 mm TL and in all fins by 17 mm TL. Branching of soft rays in the respective fins started and was completed considerably later than the completion of segmentation, as well as ossification of the fin-supports. Morphological transformation from larva to juvenile was apparently completed by about 17 mm TL. Although the completion of basic juvenile structures was attained by transformation at that body size, succeeding morphological changes occurred between 17 mm and 32 mm TL. Newly-extruded larvae possessed one or two teeth on the lower pharyngeal and pharyngobranchials 3 and 4, but lacked premaxillary, dentary, palatine and prevomer teeth. The fish attained full development of gill rakers and gill teeth by 15 mm TL, the upper and lower pharyngeal teeth subsequently developing into a toothplate. Development of the premaxillary, dentary and palatine teeth was completed at about 30 mm TL, by which time loop formation of the digestive canal and the number of pyloric caeca had attained the adult condition. The developmental sequence of swimming and feeding functions during larval and early juvenile periods appeared to proceed from primitive functions to advanced or complex ones, from the ability to produce propulsive force to that of swimming with high maneuverability and from development of the irreducible minimum function of passing food into the stomach to the ability to actively capture prey via passive food acquisition with the gill rakers and gill teeth. The relationship of morphological development to the behavior and feeding activity of artificially-produced hatchlings is also discussed.  相似文献   

13.
The development of all osteological elements, except scales, of the Japanese sardine,Sardinops melanostictus, is described from newly-hatched larvae to adult fishes. Newly-hatched larvae lacked osteological elements. Part of the head skeleton began to develop in 53 hour old larvae (4.2 mm in notochord length [NL]). Larvae at the first-feeding stage (77 hours, 5.5 mm NL) possessed several elements of the head skeleton and pectoral fin supports. In a 10.5 mm NL specimen, part of the caudal and dorsal fin supports were apparent. The centra appeared in specimens 18–22.7 mm in standard length (SL). Gill rakers were first observed in the lower branchial arches at 13 mm NL and spine-like processes with spiny nodules from about 25 mm SL. The distance between the predorsal and first dorsal proximal radial relative to SL rapidly decreased with forward translocation of the dorsal fin and became constant beyond approximately 34 mm SL. At this stage, most basic osteological elements were established. Completion of the osteological structure was characterized by the disappearance of the dentary teeth at 60–70 mm SL. Based on the osteological development, ontogenetic intervals consisting of four periods and eight phases were recognized.  相似文献   

14.
The cichlid Hypsophrys nicaraguensis is a popular fish known as butterfly, and despite its widespread use as pets, little is known about its reproductive biology. In order to contribute to this knowledge, the study describes the relevant larval development characteristics, from adult and larval cultures in captivity. Every 12h, samples of larvae were collected and observed under the microscope for larval stage development, and every 24h morphometric measurements were taken. Observations showed that at 120h, some larvae had swimming activity and the pectoral fins development was visible; at 144h, the dorsal fin appear and all larvae started food intake; at 168h, the formation of anal fins begins, small rudiments of pelvic fins emerge, the separation of caudal fin from anal and dorsal fins starts, and the yolk sac is reabsorbed almost completely; at 288h, the pelvic fins starts to form; at 432h, the rays and spines of dorsal and anal fins can be distinguished, both the anal and the dorsal fins have the same number of spines and rays as in adults. After 480h larvae have the first scales, ending the larval stages and starting the transformation to fingerlings. Larvae were successfully fed with commercial diet.  相似文献   

15.
Adipose fins are appendages found on the dorsal midline between the dorsal and caudal fins in more than 6000 living species of teleost fishes. It has been consistently argued that adipose fins evolved once and have been lost repeatedly across teleosts owing to limited function. Here, we demonstrate that adipose fins originated repeatedly by using phylogenetic and anatomical evidence. This suggests that adipose fins are adaptive, although their function remains undetermined. To test for generalities in the evolution of form in de novo vertebrate fins, we studied the skeletal anatomy of adipose fins across 620 species belonging to 186 genera and 55 families. Adipose fins have repeatedly evolved endoskeletal plates, anterior dermal spines and fin rays. The repeated evolution of fin rays in adipose fins suggests that these fins can evolve new tissue types and increased structural complexity by expressing fin-associated developmental modules in these new territories. Patterns of skeletal elaboration differ between the various occurrences of adipose fins and challenge prevailing hypotheses for vertebrate fin origin. Adipose fins represent a powerful and, thus far, barely studied model for exploring the evolution of vertebrate limbs and the roles of adaptation and generative biases in morphological evolution.  相似文献   

16.
The osteological development of the head skeleton and dorsal, pectoral, and anal fin supports, are described from cleared and stained specimens ofLophius gastrophysus larvae, ranging from 4.6 to 21.8 mm NL; the results are compared with those of juvenile (79.8 mm SL) and adult (398 mm SL) specimens. Tiny conical teeth are present on the premaxillary, dentary, palatine and vomer since early stage. The first three dorsal fin spines are initially positioned on the midline of body posterior to the supraoccipital, but they migrate forward with growth and become cephalic in juveniles. The forward movement of the dorsal spines is produced by the forward extension of the cartilaginous basal inside the subepidermal space. During the planktonic larval stage the pectoral fins are on the sides of body as in ordinary fishes, but they move ventrad and become leg-like in bottom living juveniles and adults. Ossification of the caudal complex ofL. gastrophysus larvae proceeds very slowly and only the 21.8 mm NL larva has an almost completely ossified caudal complex. Eight principal caudal rays are loosely attached on the posterior edge of the hypurals and no procurrent rays are present. Larvae have well developed parhypurapophysis at the mid-portion of the urostyle which transforms into keel-like structure in juveniles and adults.  相似文献   

17.
The larval development of the dusky grouper Epinephelus marginatus up to the benthic juvenile stage is described in detail to establish a reference for their larval identification. Development is described in terms of ontogenetic changes in morphology, growth, pigmentation, fin structure and skeletal structure. Larvae were reared in mesocosms at a mean temperature of 24·3° C, salinity of 36·5, dissolved oxygen of 6·4 mg l?1 and pH of 8·2. Newly hatched larvae had an estimated total length (LT) of 2·3 mm. On the second day post hatching the yolk was almost fully absorbed with traces of the oil globule still present, the eyes were already pigmented and mouth and gut functional. At this stage the cranial skeletal elements for feeding and breathing (mouth and gills) and the pectoral‐fin support were already present. About 50% of the observed larvae had food in their guts. Pigmentation was very characteristic, consisting of two large chromatophores visible on the edge of the primordial fin, close to the midpoint of the post‐anal region of the body and over the midgut and hindgut and post‐anal portion of the body. At 2·9 mm LT the emergence of the second dorsal‐fin spine, characteristic of the Epinephilinae, was clearly visible. The pre‐flexion stage started in larva of 3·2 mm LT. At 5·5 mm LT the larvae possessed posterior preopercular angle spines, and the dorsal and pelvic spines presented serrated edges and were pigmented. The water surface‐tension‐related death of the yolk sac and pre‐flexion larvae described in the rearing of several other grouper species did not occur during E. marginatus culture. Notochord flexion, with initial ossification of the caudal‐fin supporting elements, started at 6·6 mm LT. At this stage the major melanophores, preopercular, dorsal and pelvic spines and mandibular teeth were already present. Transformation of larvae into juveniles occurred when larvae averaged 13·8 mm LT. Juveniles with a mean LT of 20·1 mm started to settle and most of them were benthic with a mean LT of 26·8 mm.  相似文献   

18.
19.
《Journal of morphology》2017,278(12):1716-1725
The dorsal fin is one of the most varied swimming structures in Acanthomorpha, the spiny‐finned fishes. This fin can be present as a single contiguous structure supported by bony spines and soft lepidotrichia, or it may be divided into an anterior, spiny dorsal fin and a posterior, soft dorsal fin. The freshwater fish family Percidae exhibits especially great variation in dorsal fin spacing, including fishes with separated fins of varying gap length and fishes with contiguous fins. We hypothesized that fishes with separated dorsal fins, especially those with large gaps between fins, would have stiffened fin elements at the leading edge of the soft dorsal fin to resist hydrodynamic loading during locomotion. For 10 percid species, we measured the spacing between dorsal fins and calculated the second moment of area of selected spines and lepidotrichia from museum specimens. There was no significant relationship between the spacing between dorsal fins and the second moment of area of the leading edge of the soft dorsal fin.  相似文献   

20.
The see-through stock in the medaka Oryzias latipes, causes pigments to be absent from the whole body and has a transparent body in the adult stage as well as during embryonic stages. To establish a standard table of growth stages for this model fish, morphological features were examined during the growing period from hatching to adulthood. The main observations were performed on morphological changes in external and internal organs that could be seen through the body wall of the living fish during growth. Finally, five growth stages from just after hatching to the adult stage were defined on the basis of synchronized or definite changes in morphology as follows: (1) stage 40 in which the nodes (joints) in bony rays of the caudal and pectoral fins first appear, (2) the stage 41 in which the ribs and the anal, dorsal and ventral fins are formed by degeneration of the membrane fin folds, as recognized by the first appearance of nodes in the fin rays of the anal, pectoral and dorsal fins, and the parallel distribution of the dorsal artery and ventral vein of the tail, (3) stage 42 in which the 2-spiral pattern of the gut, the ray nodes in the ventral fins, and the scales first appear, (4) stage 43 in which early secondary sexual characters such as urinogenital protruberances (female) and papillar processes (male) appear, (5) stage 44 in which the 3-spiral pattern of the gut and the papillar process on the 2nd ray of pectral fins (male) appear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号