首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have analysed the role of RBR (retinoblastoma related), the Arabidopsis homologue of the tumour suppressor Retinoblastoma protein (pRb), during meiosis. We characterise the rbr-2 mutation, which causes a loss of RBR in male meiocytes. The rbr-2 plants exhibit strongly reduced fertility, while vegetative growth is generally unaffected. The reduced fertility is due to a meiotic defect that results in reduced chiasma formation and subsequent errors in chromosome disjunction. Immunolocalisation studies in wild-type meiocytes reveal that RBR is recruited as foci to the chromosomes during early prophase I in a DNA double-strand-break-dependent manner. In the absence of RBR, expression of several meiotic genes is reduced. The localisation of the recombinases AtRAD51 and AtDMC1 is normal. However, localisation of the MutS homologue AtMSH4 is compromised. Additionally, polymerisation of the synaptonemal complex protein AtZYP1 is abnormal. Together, these data indicate that loss of RBR during meiosis results in a reduction of crossover formation and an associated failure in chromosome synapsis. Our results indicate that RBR has an important role in meiosis affecting different aspects of this complex process.  相似文献   

3.
4.
The cohesin complex is a ring-shaped proteinaceous structure that entraps the two sister chromatids after replication until the onset of anaphase when the ring is opened by proteolytic cleavage of its α-kleisin subunit (RAD21 at mitosis and REC8 at meiosis) by separase. RAD21L is a recently identified α-kleisin that is present from fish to mammals and biochemically interacts with the cohesin subunits SMC1, SMC3 and STAG3. RAD21L localizes along the axial elements of the synaptonemal complex of mouse meiocytes. However, its existence as a bona fide cohesin and its functional role awaits in vivo validation. Here, we show that male mice lacking RAD21L are defective in full synapsis of homologous chromosomes at meiotic prophase I, which provokes an arrest at zygotene and leads to total azoospermia and consequently infertility. In contrast, RAD21L-deficient females are fertile but develop an age-dependent sterility. Thus, our results provide in vivo evidence that RAD21L is essential for male fertility and in females for the maintenance of fertility during natural aging.  相似文献   

5.
We identify a new mammalian cohesin subunit, RAD21-like protein (RAD21L), with sequence similarity to RAD21 and REC8. RAD21L localizes along axial elements in early meiotic prophase, in a manner that is spatiotemporally different to either REC8 or RAD21. Remarkably, RAD21L and REC8 have symmetrical, mutually exclusive localization on the not-yet-synapsed homologues, implying that the cohesin patterning could provide a code for homologue recognition. RAD21 transiently localizes to axial elements after the dissociation of RAD21L and REC8 in late pachytene, a period of recombination repair. Further, we show that the removal of cohesins and synaptonemal complex during late meiotic prophase is promoted by Polo-like kinase 1, which is similar to the mitotic prophase pathway.  相似文献   

6.
A novel mutation, mei8, was isolated in a forward genetic screen for infertility mutations induced by chemical mutagenesis of ES cells. Homozygous mutant mice are sterile. Mutant females exhibit ovarian dysgenesis and lack ovarian follicles at reproductive maturity. Affected males have small testes due to arrest of spermatogenesis during meiotic prophase I. Genetic mapping and positional cloning of mei8 led to the identification of a mutation in Rec8, a homolog of the yeast meiosis-specific cohesin gene REC8. Analysis of meiosis in Rec8(mei8)/Rec8(mei8) spermatocytes showed that, while initiation of recombination and synapsis occurs, REC8 is required for the completion and/or maintenance of synapsis, cohesion of sister chromatids, and the formation of chiasmata, as it is in other organisms. However, unlike yeast and Caenorhabditis elegans, localization of REC8 on meiotic chromosomes is not required for the assembly of axial elements.  相似文献   

7.
8.
RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3ʹUTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes. We found that RBM46 preferentially binds target mRNAs containing GCCUAU/GUUCGA motifs in their 3ʹUTRs regions. In Rbm46 knockout mice, the RBM46-target cohesin subunits displayed unaltered mRNA levels but had reduced translation, resulting in the failed assembly of axial elements, synapsis disruption, and meiotic arrest. Our study thus provides mechanistic insights into the molecular functions of RBM46 in gametogenesis and illustrates the power of LACE-seq for investigations of RNA-binding protein functions when working with low-abundance input materials.  相似文献   

9.
The cohesin complex is essential for mitosis and meiosis. The specific meiotic roles of individual cohesin proteins are incompletely understood. We report in vivo functions of the only meiosis‐specific STAG component of cohesin, STAG3. Newly generated STAG3‐deficient mice of both sexes are sterile with meiotic arrest. In these mice, meiotic chromosome architecture is severely disrupted as no bona fide axial elements (AE) form and homologous chromosomes do not synapse. Axial element protein SYCP3 forms dot‐like structures, many partially overlapping with centromeres. Asynapsis marker HORMAD1 is diffusely distributed throughout the chromatin, and SYCP1, which normally marks synapsed axes, is largely absent. Centromeric and telomeric sister chromatid cohesion are impaired. Centromere and telomere clustering occurs in the absence of STAG3, and telomere structure is not severely affected. Other cohesin proteins are present, localize throughout the STAG3‐devoid chromatin, and form complexes with cohesin SMC1β. No other deficiency in a single meiosis‐specific cohesin causes a phenotype as drastic as STAG3 deficiency. STAG3 emerges as the key STAG cohesin involved in major functions of meiotic cohesin.  相似文献   

10.
Cohesion between sister chromatids in mitotic and meiotic cells is promoted by a ring‐shaped protein structure, the cohesin complex. The cohesin core complex is composed of four subunits, including two structural maintenance of chromosome (SMC) proteins, one α‐kleisin protein, and one SA protein. Meiotic cells express both mitotic and meiosis‐specific cohesin core subunits, generating cohesin complexes with different subunit composition and possibly separate meiotic functions. Here, we have analyzed the in vivo function of STAG3, a vertebrate meiosis‐specific SA protein. Mice with a hypomorphic allele of Stag3, which display a severely reduced level of STAG3, are viable but infertile. We show that meiocytes in homozygous mutant Stag3 mice display chromosome axis compaction, aberrant synapsis, impaired recombination and developmental arrest. We find that the three different α‐kleisins present in meiotic cells show different dosage‐dependent requirements for STAG3 and that STAG3‐REC8 cohesin complexes have a critical role in supporting meiotic chromosome structure and functions.  相似文献   

11.
The histone H3 variant (CENH3) of centromeric nucleosomes is essential for kinetochore assembly and thus for chromosome segregation in eukaryotes. The mechanism(s) that determine centromere identity, assembly and maintenance of kinetochores are still poorly understood. Although the role of CENH3 during mitosis has been studied in several organisms, little is known about its meiotic function. We show that RNAi-mediated CENH3 knockdown in Arabidopsis thaliana caused dwarfism as the result of a reduced number of mitotic divisions. The remaining mitotic divisions appeared to be error-free. CENH3 RNAi transformants had reduced fertility because of frequently disturbed meiotic chromosome segregation. N-terminally truncated EYFP-CENH3(C) is deposited to and functional within Arabidopsis centromeres of mitotic chromosomes, but cannot be loaded onto centromeres of meiotic nuclei. Thus the N-terminal part is apparently required for CENH3 loading during meiosis. EYFP-CENH3(C) expression reduces the amount of endogenous CENH3, thus mimicking the effect of RNAi. The consequences of reduced endogenous CENH3 and lack of meiotic incorporation of EYFP-CENH3(C) are reduced fertility caused by insufficient CENH3 loading to the centromeres of meiotic chromosomes, subsequent lagging of chromosomes and formation of micronuclei.  相似文献   

12.
RecQ helicases are a conserved group of proteins with a role in the maintenance of genome integrity. In Saccharomyces cerevisiae (budding yeast), meiotic recombination is increased in the absence of the RecQ helicase Sgs1. Here we investigated the potential meiotic role of the Sgs1 homologue AtRECQ4A and the closely related AtRECQ4B. Both proteins have been shown to function during recombination in somatic cells, but so far their meiotic role has not been investigated. Both AtRECQ4A and AtRECQ4B were expressed in reproductive tissues. Although immunolocalization studies showed that AtRECQ4A associates with recombination intermediates, we found no evidence that its loss or that of AtRECQ4B had a significant effect on meiotic cross-overs, suggesting functional redundancy with other RECQ family members. Nevertheless, pollen viability decreased in Atrecq4A, resulting in a reduction in fertility, although this was not the case in Atrecq4B. Cytological analysis revealed chromatin bridges between the telomeres of non-homologous chromosomes in Atrecq4A at metaphase I, in some instances accompanied by chromosome fragmentation at anaphase I. The bridges required telomeric repeats and were dependent on meiotic recombination. Immunolocalization confirmed the association of AtRECQ4A with the telomeres during prophase I, which we propose enables dissolution of recombination-dependent telomeric associations. Thus, this study has identified a hitherto unknown role for a member of the RECQ helicase family during meiosis that contributes to the maintenance of chromosome integrity. As telomere structure is generally conserved, it seems likely that these associations may arise during meiosis in other species, where they must also be removed.  相似文献   

13.
Replication protein A (RPA) is involved in many aspects of DNA metabolism including meiotic recombination. Many species possess a single RPA1 gene but Arabidopsis possesses five RPA1 paralogues. This feature has enabled us to gain further insight into the meiotic role of RPA1. Proteomic analysis implicated one of the AtRPA1 family (AtRPA1a) in meiosis. Immunofluorescence studies confirmed that AtRPA1a is associated with meiotic chromosomes from leptotene through to early pachytene. Analysis of an Atrpa1a mutant revealed that AtRPA1a is not essential at early stages in the recombination pathway. DNA double‐strand breaks are repaired in Atrpa1a, but the mutant is defective in the formation of crossovers, exhibiting a 60% reduction in chiasma frequency. Consistent with this, localization of recombination proteins AtRAD51 and AtMSH4 appears normal, whereas the numbers of AtMLH1 and AtMLH3 foci at pachytene are significantly reduced. This suggests that the defect in Atrpa1a is manifested at the stage of second‐end capture. Analysis of Atrpa1a/Atmsh4 and Atrpa1a/Atmlh3 double mutants indicates that loss of AtRPA1a predominantly affects the formation of class I, interference‐dependent crossovers.  相似文献   

14.
Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination   总被引:3,自引:0,他引:3  
The Spo11 protein is a eukaryotic homologue of the archaeal DNA topoisomerase VIA subunit (topo VIA). In archaea it is involved, together with its B subunit (topo VIB), in DNA replication. However, most eukaryotes, including yeasts, insects and vertebrates, instead have a single gene for Spo11/topo VIA and no homologues for topo VIB. In these organisms, Spo11 mediates DNA double-strand breaks that initiate meiotic recombination. Many plant species, in contrast to other eukaryotes, have three homologues for Spo11/topo VIA and one for topo VIB. The homologues in Arabidopsis, AtSPO11-1, AtSPO11-2 and AtSPO11-3, all share 20-30% sequence similarity with other Spo11/topo VIA proteins, but their functional relationship during meiosis or other processes is not well understood. Previous genetic evidence suggests that AtSPO11-1 is a true orthologue of Spo11 in other eukaryotes and is required for meiotic recombination, whereas AtSPO11-3 is involved in DNA endo-reduplication as a part of the topo VI complex. In this study, we show that plants homozygous for atspo11-2 exhibit a severe sterility phenotype. Both male and female meiosis are severely disrupted in the atspo11-2 mutant, and this is associated with severe defects in synapsis during the first meiotic division and reduced meiotic recombination. Further genetic analysis revealed that AtSPO11-1 and AtSPO11-2 genetically interact, i.e. plants heterozygous for both atspo11-1 and atspo11-2 are also sterile, suggesting that AtSPO11-1 and AtSPO11-2 have largely overlapping functions. Thus, the three Arabidopsis Spo11 homologues appear to function in two discrete processes, i.e. AtSPO11-1 and AtSPO11-2 in meiotic recombination and AtSPO11-3 in DNA replication.  相似文献   

15.
Homologous recombination(HR) is a key process during meiosis in reproductive cells and the DNA damage repair process in somatic cells. Although chromatin structure is Researchthought to be crucial for HR, only a small number of chromatin modifiers have been studied in HR regulation so far. Here, we investigated the function of CURLY LEAF(CLF), a Polycomb-group(PcG) gene responsible for histone3 lysine 27 trimethylation(H3K27me3), in somatic and meiotic HR in Arabidopsis thaliana. Although fluorescent protein reporter assays in pollen and seeds showed that the frequency of meiotic cross-over in the loss-of-function mutant clf-29 was not significantly different from that in wild type, there was a lower frequency of HR in clf-29 than in wild type under normal conditions and under bleomycin treatment. The DNA damage levels were comparable between clf-29 and wild type, even though several DNA damage repair genes(e.g. ATM, BRCA2 a, RAD50, RAD51, RAD54,and PARP2) were expressed at lower levels in clf-29. Under bleomycin treatment, the expression levels of DNA repair genes were similar in clf-29 and wild type, thus CLF may also regulate HR via other mechanisms. These findings expand the current knowledge of PcG function and contribute to general interests of epigenetic regulation in genome stability regulation.  相似文献   

16.
Partitioning of the genome in meiosis occurs through two highly specialized cell divisions, named meiosis I and meiosis II. Step‐wise cohesin removal is required for chromosome segregation in meiosis I, and sister chromatid segregation in meiosis II. In meiosis I, mono‐oriented sister kinetochores appear as fused together when examined by high‐resolution confocal microscopy, whereas they are clearly separated in meiosis II, when attachments are bipolar. It has been proposed that bipolar tension applied by the spindle is responsible for the physical separation of sister kinetochores, removal of cohesin protection, and chromatid separation in meiosis II. We show here that this is not the case, and initial separation of sister kinetochores occurs already in anaphase I independently of bipolar spindle forces applied on sister kinetochores, in mouse oocytes. This kinetochore individualization depends on separase cleavage activity. Crucially, without kinetochore individualization in meiosis I, bivalents when present in meiosis II oocytes separate into chromosomes and not sister chromatids. This shows that whether centromeric cohesin is removed or not is determined by the kinetochore structure prior to meiosis II.  相似文献   

17.
Homologous recombination (HR) is a key process during meiosis in reproductive cells and the DNA damage repair process in somatic cells. Although chromatin structure is thought to be crucial for HR, only a small number of chromatin modifiers have been studied in HR regulation so far. Here, we investigated the function of CURLY LEAF (CLF), a Polycomb‐group (PcG) gene responsible for histone3 lysine 27 trimethylation (H3K27me3), in somatic and meiotic HR in Arabidopsis thaliana. Although fluorescent protein reporter assays in pollen and seeds showed that the frequency of meiotic cross‐over in the loss‐of‐function mutant clf‐29 was not significantly different from that in wild type, there was a lower frequency of HR in clf‐29 than in wild type under normal conditions and under bleomycin treatment. The DNA damage levels were comparable between clf‐29 and wild type, even though several DNA damage repair genes (e.g. ATM, BRCA2a, RAD50, RAD51, RAD54, and PARP2) were expressed at lower levels in clf‐29. Under bleomycin treatment, the expression levels of DNA repair genes were similar in clf‐29 and wild type, thus CLF may also regulate HR via other mechanisms. These findings expand the current knowledge of PcG function and contribute to general interests of epigenetic regulation in genome stability regulation.  相似文献   

18.
In meiosis, chromosome cohesion is maintained by the cohesin complex, which is released in a two‐step manner. At meiosis I, the meiosis‐specific cohesin subunit Rec8 is cleaved by the protease Separase along chromosome arms, allowing homologous chromosome segregation. Next, in meiosis II, cleavage of the remaining centromere cohesin results in separation of the sister chromatids. In eukaryotes, protection of centromeric cohesion in meiosis I is mediated by SHUGOSHINs (SGOs). The Arabidopsis genome contains two SGO homologs. Here we demonstrate that Atsgo1 mutants show a premature loss of cohesion of sister chromatid centromeres at anaphase I and that AtSGO2 partially rescues this loss of cohesion. In addition to SGOs, we characterize PATRONUS which is specifically required for the maintenance of cohesion of sister chromatid centromeres in meiosis II. In contrast to the Atsgo1 Atsgo2 double mutant, patronus T‐DNA insertion mutants only display loss of sister chromatid cohesion after meiosis I, and additionally show disorganized spindles, resulting in defects in chromosome segregation in meiosis. This leads to reduced fertility and aneuploid offspring. Furthermore, we detect aneuploidy in sporophytic tissue, indicating a role for PATRONUS in chromosome segregation in somatic cells. Thus, ploidy stability is preserved in Arabidopsis by PATRONUS during both meiosis and mitosis.  相似文献   

19.
Meiotic recombination is a fundamental biological process that plays a central role in the evolution and breeding of plants. We have developed a new seed-based assay for meiotic recombination in Arabidopsis. The assay is based on the transformation of green and red fluorescent markers expressed under a seed-specific promoter. A total of 74 T-DNA markers were isolated, sequenced and mapped both physically and genetically. Lines containing red and green markers that map 1-20 cM apart were crossed to produce tester lines with the two markers linked in cis yielding seeds that fluoresced both in red and green. We show that these lines can be used for efficient scoring of recombinant types (red only or green only fluorescing seeds) in a seed population derived from a test cross (backcross) or self-pollination. Two tester lines that were characterized during several generations of backcross and self-pollination, one in the background of ecotype Landsberg and one in the ecotype Columbia, are described. We discuss the number of plants and seeds to be scored in order to obtain reliable and reproducible crossing over rate values. This assay offers a relatively high-throughput method, with the benefit of seed markers (similar to the maize classical genetic markers) combined with the advantages of Arabidopsis. It advances the prospect to better understand the factors that affect the rate of meiotic crossover in plants and to stimulate this process for more efficient breeding and mapping.  相似文献   

20.
During meiosis, sister chromatid cohesion is required for normal levels of homologous recombination, although how cohesion regulates exchange is not understood. Null mutations in orientation disruptor (ord) ablate arm and centromeric cohesion during Drosophila meiosis and severely reduce homologous crossovers in mutant oocytes. We show that ORD protein localizes along oocyte chromosomes during the stages in which recombination occurs. Although synaptonemal complex (SC) components initially associate with synapsed homologues in ord mutants, their localization is severely disrupted during pachytene progression, and normal tripartite SC is not visible by electron microscopy. In ord germaria, meiotic double strand breaks appear and disappear with frequency and timing indistinguishable from wild type. However, Ring chromosome recovery is dramatically reduced in ord oocytes compared with wild type, which is consistent with the model that defects in meiotic cohesion remove the constraints that normally limit recombination between sisters. We conclude that ORD activity suppresses sister chromatid exchange and stimulates inter-homologue crossovers, thereby promoting homologue bias during meiotic recombination in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号