首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The virulence of many Gram-negative pathogens is associated with type III secretion systems (T3SSs), which deliver virulence effector proteins into the cytoplasm of host cells. Components of enteropathogenic Escherichia coli (EPEC) T3SS are encoded within the locus of enterocyte effacement (LEE). While most LEE-encoded T3SS proteins in EPEC have assigned names and functions, a few of them remain poorly characterized. Here, we studied a small LEE-encoded protein, Orf15, that shows no homology to other T3SS/flagellar proteins and is only present in attaching and effacing pathogens, including enterohemorrhagic E. coli and Citrobacter rodentium. Our findings demonstrated that it is essential for type III secretion (T3S) and that it is localized to the periplasm and associated with the inner membrane. Membrane association was driven by the N-terminal 19 amino acid residues, which were also shown to be essential for T3S. Consistent with its localization, Orf15 was found to interact with the EPEC T3SS outer membrane ring component, EscC, which was previously shown to be embedded within the outer membrane and protruding into the periplasmic space. Interestingly, we found that the predicted coiled-coil structure of Orf15 is critical for the protein's function. Overall, our findings suggest that Orf15 is a structural protein that contributes to the structural integrity of the T3S complex, and therefore we propose to rename it EscA.  相似文献   

2.
3.
Abstract Listeriolysin, an SH-activated haemolysin probably involved in Listeria pathogenicity, has been cloned into the cosmid vector pHC79 and was expressed in Escherichia coli HB101 cells. Chromosomal DNA of Listeria monocytogenes serovar 1/2 was partially digested with Mbo I and ligated to the Bam HI cleaved cosmid. From 2000 recombinant clones examined, 12 (0.6%) produced haemolysin in solid and liquid media. All of them contained chromosome fragments of Listeria of about 40 kb. The cloning of the listeriolysin determinant will lead to a better understanding of the basis of Listeria pathogenicity.  相似文献   

4.
Listeria monocytogenes is a foodborne pathogen causing listeriosis. Listeria in foods can be inhibited with bacteriocins or bacteriocin producing cultures. The aim of this study was to enhance the killing of L. monocytogenes by binding bacteriocin producing Escherichia coli cells to Listeria cells. Antilisterial E. coli was obtained by transferring leucocin C production from Leuconostoc carnosum 4010. For binding of E. coli cells to Listeria cells, the Listeria phage endolysin PlyP35 cell wall binding domain (CBD) was displayed on E. coli cell surface as FliC::CBD chimeric protein in flagella. CBD insertion in flagella was confirmed by Western analysis and enterokinase cleavage. By mixing isolated flagella with L. monocytogenes WSLC 1019 cells, the FliC::CBD flagella was shown to bind to Listeria cells. However, the wild type flagella also attached to Listeria cells masking putative additional binding mediated by the CBD. Yet, the cell-mediated leucocin C killing resulted in two-log reduction of Listeria, whereas the corresponding amount of leucocin C in spent culture medium could only inhibit growth without bacteriocidal effect. Cells binding Listeria and secreting antilisterial peptides may have applications in protection against listeriosis as they kill Listeria better than free antilisterial peptides.  相似文献   

5.
During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation.  相似文献   

6.
7.
致病性大肠埃希菌血清型分布及对抗生素的敏感性分析   总被引:1,自引:0,他引:1  
目的了解临床病例中致病性大肠埃希菌的主要血清型和对抗生素的敏感性。方法致病性大肠埃希菌的鉴定使用血清学的方法,药敏试验采用纸片扩散法,WHONET 5.0软件分析药敏结果。结果致病性大肠埃希菌的检出率为5.93%,共分离到7种血清型。在分离到的菌株中,ESBLs的检出率达45%。结论致病性大肠埃希菌是引起小儿腹泻的一种重要致病菌,应开展对致病性大肠埃希菌的检测,根据药敏结果选用合适药物。  相似文献   

8.
9.
10.
Synthetic N -acetyllactosamine (LacNAc) glycoside sequences coupled to BSA competitively inhibit enteropathogenic Escherichia coli (EPEC) localized adherence (LA) to human intestinal biopsy specimens and tissue culture cell monolayers. The LacNAc-specific adhesin appears to be associated with the bundle-forming pili (BFP) expressed by EPEC during the early stages of colonization. Herein, we report that recombinant bundlin inhibits EPEC LA to HEp-2 cells and binds to HEp-2 cells. Recombinant bundlin also binds, with millimolar association constants ( K assoc), to synthetic LacNAc-Benzene and LacNAc-O(CH2)8CONH2 glycosides as assessed in the gas phase by nanoelectrospray ionization mass spectrometry. Furthermore, LacNAc-BSA inhibits LA only of EPEC strains that express α bundlin alleles, suggesting putative locations for the LacNAc-binding pocket in the α bundlin monomer. Collectively, these results suggest that α bundlin possesses lectin-like properties that are responsible for LacNAc-specific initial adherence of α bundlin-expressing EPEC strains to host intestinal epithelial cells.  相似文献   

11.
Abstract Enteropathogenic strains of faecal Escherichia coli produced significantly ( P < 0.01) more maltase than the non-pathogenic strains of the organism. The enzyme was induced by maltose but repressed by glucose and fructose. The maltase was partially purified by ammonium sulphate precipitation, followed by dialysis and gel permeation chromatography. The partially purified maltase had an M r of 144500 and an apparent K m of approx. 7.6 mM for maltose. The enzyme was stimulated by Ca2+, inhibited by Cu2+, Hg2+, Uo2+, IAA and EDTA, and exhibited optimum activity at pH 6.5 at 30°C.  相似文献   

12.
Abstract Transfer of mobilizable shuttle cloning vectors by conjugation from Escherichia coli to Staphylococcus aureus occurred at a very low frequency (10−9 transconjugants per donor colony-forming unit after the mating period). It was observed that subinhibitory concentrations of penicillins (oxacillin or penicillin G) in the mating medium resulted in increased transfer frequency by conjugation of the shuttle vector pAT18 from E. coli SM10 to S. aureus 80CR5 Str (54-fold) and to Listeria monocytogenes LO17RF (45-fold). These results were interpreted as indicating that the cell wall of Gram-positive bacteria constitutes an important barrier for conjugative transfer of genetic information demonstrated that presence of a restriction system(s) in S. aureus recipients represented a major barrier to introduction of foreign DNA.  相似文献   

13.
Polyphosphate kinase is a component of the Escherichia coli RNA degradosome   总被引:8,自引:6,他引:2  
Xer site-specific recombination functions in the stable inheritance of circular plasmids and bacterial chromosomes. Two related recombinases, XerC and XerD, mediate this recombination, which 'undoes' the potential damage of homologous recombination. Xer recombination on natural plasmid sites is preferentially intramolecular, converting plasmid multimers to monomers. In contrast, recombination at the Escherichia coli recombination site, dif , occurs both intermolecularly and intramolecularly, at least when dif is inserted into a multicopy plasmid. Here the DNA sequence features of a family of core recombination sites in which the XerC- and XerD-binding sites, which are separated by 6 bp, were analysed in order to ascertain what determines whether recombination will be preferentially intramolecular, or will occur both within and between molecules. Sequence changes in either the XerC- or XerD-binding site can alter the recombination outcome. Preferential intramolecular recombination between a pair of recombination sites requires additional accessory DNA sequences and accessory recombination proteins and is correlated with reduced affinities of recombinase binding to recombination core sites, reduced XerC-mediated cleavage in vitro , and an apparent increased overall bending in recombinase–core-site complexes.  相似文献   

14.
15.
An overview of atypical enteropathogenic Escherichia coli   总被引:1,自引:0,他引:1  
The enteropathogenic Escherichia coli (EPEC) pathotype is currently divided into two groups, typical EPEC (tEPEC) and atypical EPEC (aEPEC). The property that distinguishes these two groups is the presence of the EPEC adherence factor plasmid, which is only found in tEPEC. aEPEC strains are emerging enteropathogens that have been detected worldwide. Herein, we review the serotypes, virulence properties, genetic relationships, epidemiology, reservoir and diagnosis of aEPEC, including those strains not belonging to the classical EPEC serogroups (nonclassical EPEC serogroups). The large variety of serotypes and genetic virulence properties of aEPEC strains from nonclassical EPEC serogroups makes it difficult to determine which strains are truly pathogenic.  相似文献   

16.
17.
18.
Map is an enteropathogenic Escherichia coli (EPEC) protein that is translocated into eukaryotic cells by a type III secretion system. Although not required for the induction of attaching and effacing (A/E) lesion formation characteristic of EPEC infection, translocated Map is suggested to disrupt mitochondrial membrane potential, which may impact upon subsequent functions of the organelle such as control of cell death. Before secretion, many effector proteins are maintained in the bacterial cytosol by association with a specific chaperone. In EPEC, chaperones have been identified for the effector proteins translocated intimin receptor (Tir) and EspF, and for the translocator proteins EspB and EspD. In this study, we present evidence that the Tir-specific chaperone, CesT, also performs a chaperone function for Map. Using a combination of biochemical approaches, we demonstrate specific interaction between CesT and Map. Similar to other chaperone-effector pairings, binding is apparent at the amino-terminus of Map and is indicated to proceed by a similar mechanism to CesT:Tir interaction. Map secretion from a cesT mutant strain (SE884) is shown to be reduced and, importantly, its translocation from this strain after infection of HEp-2 cells is almost totally abrogated. Although other chaperones are reported to have a bivalent binding specificity, CesT is the first member of its family that chaperones more than one protein for translocation.  相似文献   

19.
20.
The antimicrobial efficacy of protamine on Listeria monocytogenes and Escherichia coli was evaluated at concentrations from 50 to 10 000 microgram ml-1 and pH levels from 5.5 to 8.0. The minimum inhibitory concentrations decreased with increasing pH. Protamine inhibited E. coli at all pH values while L. monocytogenes was inhibited at pH 6.5 and above. The antimicrobial efficacy of protamine decreased in the presence of negatively charged gelatine B but remained almost unchanged with addition of the positively charged gelatine A. Binding studies showed that the amount of protamine adsorbed to culture media components in tryptic soy broth and bacterial cells increased with increasing pH values. The increased efficacy of protamine at alkaline pH may be explained on the basis of an increase in electrostatic affinity for the cell surface of target cells. E. coli produced a protamine-degrading enzyme, however, was still susceptible to protamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号