首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase-activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N-terminus, generating a potent proapoptotic 18-kDa fragment (Bax/p18). Both the calpain-mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane-enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and fragmentation of DNA. Unlike the full-length Bax, Bax/p18 did not interact with the antiapoptotic Bcl-2 protein in the mitochondrial fraction of drug-treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide-induced calpain activation, Bax cleavage, cytochrome c release, and caspase-3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase-3-mediated apoptosis that was not blocked by overexpression of Bcl-2 protein. Therefore, Bax/p18 has a cytochrome c-releasing activity that promotes cell death independent of Bcl-2. Finally, Bcl-2 overexpression inhibited etoposide-induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution.  相似文献   

2.
Etoposide (VP-16) a topoisomerase II inhibitor induces apoptosis of tumor cells. The present study was designed to elucidate the mechanisms of etoposide-induced apoptosis in C6 glioma cells. Etoposide induced increased formation of ceramide from sphingomyelin and release of mitochondrial cytochrome c followed by activation of caspase-9 and caspase-3, but not caspase-1. In addition, exposure of cells to etoposide resulted in decreased expression of Bcl-2 with reciprocal increase in Bax protein. z-VAD.FMK, a broad spectrum caspase inhibitor, failed to suppress the etoposide-induced ceramide formation and change of the Bax/Bcl-2 ratio, although it did inhibit etoposide-induced death of C6 cells. Reduced glutathione or N-acetylcysteine, which could reduce ceramide formation by inhibiting sphingomyelinase activity, prevented C6 cells from etoposide-induced apoptosis through blockage of caspase-3 activation and change of the Bax/Bcl-2 ratio. In contrast, the increase in ceramide level by an inhibitor of ceramide glucosyltransferase-1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol caused elevation of the Bax/Bcl-2 ratio and potentiation of caspase-3 activation, thereby resulting in enhancement of etoposide-induced apoptosis. Furthermore, cell-permeable exogenous ceramides (C2- and C6-ceramide) induced downregulation of Bcl-2, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspases-9 and -3. Taken together, these results suggest that ceramide may function as a mediator of etoposide-induced apoptosis of C6 glioma cells, which induces increase in the Bax/Bcl-2 ratio followed by release of cytochrome c leading to caspases-9 and -3 activation.  相似文献   

3.
In the present study, we investigated the effects of tetramethylpyrazine (TMP) on hydrogen peroxide (H2O2)-induced apoptosis in PC12 cells. The apoptosis in H2O2-induced PC12 cells was accompanied by a decrease in Bcl-2/Bax protein ratio, release of cytochrome c to cytosol and the activation of caspase-3. TMP not only suppressed the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol, but also attenuated caspase-3 activation and eventually protected against H2O2-induced apoptosis. These results indicated that TMP blocked H2O2-induced apoptosis by the regulation of Bcl-2 family members, suppression of cytochrome c release, and caspase cascade activation in PC12 cells.  相似文献   

4.
We used a rat pheochromocytoma (PC12) cell line to study the effects of salidroside on hydrogen peroxide (H(2)O(2))-induced apoptosis. In PC12 cells, H(2)O(2)-induced apoptosis was accompanied by the down-regulation of Bcl-2, the up-regulation of Bax, the release of mitochondrial cytochrome c to cytosol, and the activation of caspase-3, -8 and -9. However, salidroside suppressed the down-regulation of Bcl-2, the up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol. Moreover, salidroside attenuated caspase-3, -8 and -9 activation, and eventually protected cells against H(2)O(2)-induced apoptosis. Taken together, these results suggest that treatment of PC12 cells with salidroside can block H(2)O(2)-induced apoptosis by regulating Bcl-2 family members and by suppressing cytochrome c release and caspase cascade activation.  相似文献   

5.
This study was undertaken to investigate the molecular mechanisms underlying the neuroprotective actions of lithium against glutamate excitotoxicity with a focus on the role of proapoptotic and antiapoptotic genes. Long term, but not acute, treatment of cultured cerebellar granule cells with LiCl induces a concentration-dependent decrease in mRNA and protein levels of proapoptotic p53 and Bax; conversely, mRNA and protein levels of cytoprotective Bcl-2 are remarkably increased. The ratios of Bcl-2/Bax protein levels increase by approximately 5-fold after lithium treatment for 5-7 days. Exposure of cerebellar granule cells to glutamate induces a rapid increase in p53 and Bax mRNA and protein levels with no apparent effect on Bcl-2 expression. Pretreatment with LiCl for 7 days prevents glutamate-induced increase in p53 and Bax expression and maintains Bcl-2 in an elevated state. Glutamate exposure also triggers the release of cytochrome c from the mitochondria into the cytosol. Lithium pretreatment blocks glutamate-induced cytochrome c release and cleavage of lamin B1, a nuclear substrate for caspase-3. These results strongly suggest that lithium-induced Bcl-2 up-regulation and p53 and Bax down-regulation play a prominent role in neuroprotection against excitotoxicity. Our results further suggest that lithium, in addition to its use in the treatment of bipolar depressive illness, may have an expanded use in the intervention of neurodegeneration.  相似文献   

6.
Most thymocytes that have not successfully rearranged their TCR genes or that express a receptor with subthreshold avidity for self-Ag/MHC enter a default apoptosis pathway, death by neglect. Spontaneous thymocyte apoptosis (STA), at least in part, may mimic this process in vitro. However, the molecular mechanism(s) by which thymocytes undergo this spontaneous apoptosis remains unknown. Here, we report that caspsase-1 and caspase-3 are activated during STA, but these caspases are dispensable for this apoptotic process. The inhibition of STA by a pan-caspase inhibitor, zVAD, suggests that multiple caspase pathways exist. Importantly, the early release of cytochrome c from mitochondria closely correlates with the degradation of Bcl-2 and Bcl-xL and a decrease in the ratios of Bcl-2 and Bcl-xL to Bax during STA. These findings suggest that the degradation of Bcl-2 and Bcl-xL may favor Bax to induce cytochrome c release from mitochondria, which subsequently activates downstream caspases in STA. Our data provide the first biochemical insight into the molecular mechanism of STA.  相似文献   

7.
Bak but not Bax is essential for Bcl-xS-induced apoptosis   总被引:2,自引:0,他引:2  
Bcl-x(S), a proapoptotic member of the Bcl-2 protein family, is localized in the mitochondria and induces apoptosis in a caspase- and BH3-dependent manner by a mechanism involving cytochrome c release. The way in which Bcl-x(S) induces caspase activation and cytochrome c release, as well as the relationship between Bcl-x(S) and other proapoptotic members of the Bcl-2 family, is not known. Here we used embryonic fibroblasts derived from mice deficient in the multidomain proapoptotic members of the Bcl-2 family (Bax and Bak) and the apoptotic components of the apoptosome (Apaf-1 and caspase-9) to unravel the cascade of events by which Bcl-x(S) promotes apoptosis. Our results show that Bak but not Bax is essential for Bcl-x(S)-induced apoptosis. Bcl-x(S) induced activation of Bak, which in turn promoted apoptosis by apoptosome-dependent and -independent pathways. These findings provide the first evidence that a proapoptotic Bcl-2 family protein induces apoptosis exclusively via Bak.  相似文献   

8.
Bcl-2 is an integral intracellular membrane protein that can protect cells from apoptosis induced by multiple insults in a variety of cell types. During apoptosis, Bcl-2 was cleaved into a shortened fragment (Bcl-2/Delta34) by a caspase-3-like protease in human Mo7e megakaryocytic leukemia cells deprived of exogenous rhGM-CSF. Results from cell fractionation and immunoblot analyses indicated that both Bcl-2 and Bcl-2/Delta34 were located exclusively on the mitochondria of Mo7e cells. Treatment of isolated mitochondria with recombinant caspase-3 induced the same cleavage of Bcl-2 in vitro and caused the release of cytochrome c from the mitochondria into the supernatant. The antiapoptotic effect of Bcl-2/Delta34 was investigated using an in vitro protein translation approach. Both Bcl-2/Delta34 and Bax proteins generated in wheat germ extract were readily relocated to the mitochondria isolated from control Mo7e cells. Insertion of Bax, but not Bcl-2/Delta34, into mitochondria triggered a rapid release of cytochrome c from the mitochondria. Coimmunoprecipitation studies showed that, unlike Bcl-2, the cleaved Bcl-2 fragment was no longer functional for dimerization with either Bcl-2 or Bax. Taken together, these findings showed that the integrity of Bcl-2 is necessary for its function of heterodimerization with Bax, which appears to be one of the mechanisms of antiapoptotic effect of Bcl-2.  相似文献   

9.
We have shown previously that depletion of polyamines delays apoptosis induced by camptothecin in rat intestinal epithelial cells (IEC-6). Mitochondria play an important role in the regulation of apoptosis in mammalian cells because apoptotic signals induce mitochondria to release cytochrome c. The latter interacts with Apaf-1 to activate caspase-9, which in turn activates downstream caspase-3. Bcl-2 family proteins are involved in the regulation of cytochrome c release from mitochondria. In this study, we examined the effects of polyamine depletion on the activation of the caspase cascade, release of cytochrome c from mitochondria, and expression and translocation of Bcl-2 family proteins. We inhibited ornithine decarboxylase, the first rate-limiting enzyme in polyamine synthesis, with alpha-difluoromethylornithine (DFMO) to deplete cells of polyamines. Depletion of polyamines prevented camptothecin-induced release of cytochrome c from mitochondria and decreased the activity of caspase-9 and caspase-3. The mitochondrial membrane potential was not disrupted when cytochrome c was released. Depletion of polyamines decreased translocation of Bax to mitochondria during apoptosis. The expression of antiapoptotic proteins Bcl-x(L) and Bcl-2 was increased in DFMO-treated cells. Caspase-8 activity and cleavage of Bid were decreased in cells depleted of polyamines. These results suggest that polyamine depletion prevents IEC-6 cells from apoptosis by preventing the translocation of Bax to mitochondria, thus preventing the release of cytochrome c.  相似文献   

10.
Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c.   总被引:41,自引:0,他引:41  
Caspases are cysteine proteases that mediate apoptosis by proteolysis of specific substrates. Although many caspase substrates have been identified, for most substrates the physiologic caspase(s) required for cleavage is unknown. The Bcl-2 protein, which inhibits apoptosis, is cleaved at Asp-34 by caspases during apoptosis and by recombinant caspase-3 in vitro. In the present study, we show that endogenous caspase-3 is a physiologic caspase for Bcl-2. Apoptotic extracts from 293 cells cleave Bcl-2 but not Bax, even though Bax is cleaved to an 18-kDa fragment in SK-NSH cells treated with ionizing radiation. In contrast to Bcl-2, cleavage of Bax was only partially blocked by caspase inhibitors. Inhibitor profiles indicate that Bax may be cleaved by more than one type of noncaspase protease. Immunodepletion of caspase-3 from 293 extracts abolished cleavage of Bcl-2 and caspase-7, whereas immunodepletion of caspase-7 had no effect on Bcl-2 cleavage. Furthermore, MCF-7 cells, which lack caspase-3 expression, do not cleave Bcl-2 following staurosporine-induced cell death. However, transient transfection of caspase-3 into MCF-7 cells restores Bcl-2 cleavage after staurosporine treatment. These results demonstrate that in these models of apoptosis, specific cleavage of Bcl-2 requires activation of caspase-3. When the pro-apoptotic caspase cleavage fragment of Bcl-2 is transfected into baby hamster kidney cells, it localizes to mitochondria and causes the release of cytochrome c into the cytosol. Therefore, caspase-3-dependent cleavage of Bcl-2 appears to promote further caspase activation as part of a positive feedback loop for executing the cell.  相似文献   

11.
Tumor necrosis factor (TNF)-alpha-mediated death signaling induces oligomerization of proapoptotic Bcl-2 family member Bax into a high molecular mass protein complex in mitochondrial membranes. Bax complex formation is associated with the release of cytochrome c, which propagates death signaling by acting as a cofactor for caspase-9 activation. The adenovirus Bcl-2 homologue E1B 19K blocks TNF-alpha-mediated apoptosis by preventing cytochrome c release, caspase-9 activation, and apoptosis of virus-infected cells. TNF-alpha induces E1B 19K-Bax interaction and inhibits Bax oligomerization. Oligomerized Bax may form a pore to release mitochondrial proteins, analogous to the homologous pore-forming domains of bacterial toxins. E1B 19K can also bind to proapoptotic Bak, but the functional significance is not known. TNF-alpha signaling induced Bak-Bax interaction and both Bak and Bax oligomerization. E1B 19K was constitutively in a complex with Bak, and blocked the Bak-Bax interaction and oligomerization of both. The TNF-alpha-mediated cytochrome c and Smac/DIABLO release from mitochondria was inhibited by E1B 19K expression in adenovirus-infected cells. Since either Bax or Bak is essential for death signaling by TNF-alpha, the interaction between E1B 19K and both Bak and Bax may be required to inhibit their cooperative or independent oligomerization to release proteins from mitochondria which promote caspase activation and cell death.  相似文献   

12.
(DIPP-L-Leu)2-L-LysOCH3 is a diisopropylphosphoryl dipeptide which is known to induce apoptosis of human leukemia K562 cells. The molecular and cellular mechanisms involved in this process remain to be clarified. Herein, we show that (DIPP-L-Leu)2-L-LysOCH3-induced apoptosis is associated with cytosolic accumulation of cytochrome c, sustained loss of mitochondrial transmembrane potential (MMP), transient generation of reactive oxygen species (ROS) and elevation of intracellular Ca2+ concentration. A specific caspase assay reveals an increase in caspase-9 and caspase-3 activity but no change in caspase-8 activity. Immunofluorescence analysis indicates that (DIPP-L-Leu)2-L-LysOCH3 induced upregulation of pro-apoptotic Bax and downregulation of anti-apoptotic Bcl-2 and Bcl-x(L). These results suggest that the mitochondria-regulated death pathway mediates (DIPP-L-Leu)2-L-LysOCH3-induced K562 cells apoptosis.  相似文献   

13.
We previously showed (Gastroenterology 123: 206-216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through G(i)-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation.  相似文献   

14.
Although ischemia-reperfusion (I/R) of small intestine is known to induce lung cell apoptosis, there is little information on intracellular and extracellular molecular mechanisms. Here, we investigated the mechanisms of apoptosis including the expression of Fas, Fas ligand (FasL), Bid, Bax, Bcl-2, cytochrome c, and activated caspase-3 in the rat lung at various time-points (0–24 h) of reperfusion after 1-h ischemia of small intestine. As assessed by TUNEL, the number of apoptotic epithelial cells, which were subsequently identified as type II alveolar epithelial cells by electron microscopy and immunohistochemical double-staining, increased at 3 h of reperfusion in the lung. However, intravenous injections of anti-TNF-α antibody decreased the number of TUNEL-positive cells, indicating involvement of tumor necrosis factor-α (TNF-α) in the induction of lung cell apoptosis. Western blotting and/or immunohistochemistry revealed a marked up-regulation of Fas, FasL, Bid, Bax, cytochrome c and activated caspase-3 and down-regulation of Bcl-2 in lung epithelial and stromal cells at 3 h of reperfusion. Our results indicate that I/R of small intestine results in apoptosis of rat alveolar type II cells through a series of events including systemic TNF-α, activation of two apoptotic signaling pathways and mitochondrial translocation of Bid.  相似文献   

15.
FSK88, a forskolin derivative, was extracted and purified from cultured tropical plant roots, Coleus forskohlii. Our previous studies have demonstrated that FSK88 can inhibit HL-60 cell proliferation and induce the differentiation of HL-60 cells to monocyte macrophages. In this study, we showed that FSK88 can induce apoptotic death of human gastric cancer BGC823 cells in a dose- and time-dependent manner. Results showed that FSK88-induced apoptosis was accompanied by the mitochondrial release of cytochrome c and activation of caspase-3 in BGC823 cells. Furthermore, treatment with caspase-3 inhibitor (z-DEVD-fmk) was capable of preventing the FSK88-induced caspase-3 activity and apoptosis. FSK88-induced apoptosis in human gastric cancer BGC823 cells was also accompanied by the up-regulation of Bax, Bad and down-regulation of Bcl-2. Theses results clearly demonstrated that the induction of apoptosis by FSK88 involved multiple cellular and molecular pathways and strongly suggest that pro- and anti-apoptotic Bcl-2 family genes, mitochondrial membrane potential (Deltapsi(m)), cytochrome c, and caspase-3, participate in the FSK88-induced apoptotic process in human gastric cancer BGC823 cells.  相似文献   

16.
Mammalian orthoreoviruses induce apoptosis in vivo and in vitro; however, the specific mechanism by which apoptosis is induced is not fully understood. Recent studies have indicated that the reovirus outer capsid protein μ1 is the primary determinant of reovirus-induced apoptosis. Ectopically expressed μ1 induces apoptosis and localizes to intracellular membranes. Here we report that ectopic expression of μ1 activated both the extrinsic and intrinsic apoptotic pathways with activation of initiator caspases-8 and -9 and downstream effector caspase-3. Activation of both pathways was required for μ1-induced apoptosis, as specific inhibition of either caspase-8 or caspase-9 abolished downstream effector caspase-3 activation. Similar to reovirus infection, ectopic expression of μ1 caused release into the cytosol of cytochrome c and smac/DIABLO from the mitochondrial intermembrane space. Pancaspase inhibitors did not prevent cytochrome c release from cells expressing μ1, indicating that caspases were not required. Additionally, μ1- or reovirus-induced release of cytochrome c occurred efficiently in Bax(-/-)Bak(-/-) mouse embryonic fibroblasts (MEFs). Finally, we found that reovirus-induced apoptosis occurred in Bax(-/-)Bak(-/-) MEFs, indicating that reovirus-induced apoptosis occurs independently of the proapoptotic Bcl-2 family members Bax and Bak.  相似文献   

17.
Akt regulates cell survival and apoptosis at a postmitochondrial level   总被引:26,自引:0,他引:26  
Phosphoinositide 3 kinase/Akt pathway plays an essential role in neuronal survival. However, the cellular mechanisms by which Akt suppresses cell death and protects neurons from apoptosis remain unclear. We previously showed that transient expression of constitutively active Akt inhibits ceramide-induced death of hybrid motor neuron 1 cells. Here we show that stable expression of either constitutively active Akt or Bcl-2 inhibits apoptosis, but only Bcl-2 prevents the release of cytochrome c from mitochondria, suggesting that Akt regulates apoptosis at a postmitochondrial level. Consistent with this, overexpressing active Akt rescues cells from apoptosis without altering expression levels of endogenous Bcl-2, Bcl-x, or Bax. Akt inhibits apoptosis induced by microinjection of cytochrome c and lysates from cells expressing active Akt inhibit cytochrome c induced caspase activation in a cell-free assay while lysates from Bcl-2-expressing cells have no effect. Addition of cytochrome c and dATP to lysates from cells expressing active Akt do not activate caspase-9 or -3 and immunoprecipitated Akt added to control lysates blocks cytochrome c-induced activation of the caspase cascade. Taken together, these data suggest that Akt inhibits activation of caspase-9 and -3 by posttranslational modification of a cytosolic factor downstream of cytochrome c and before activation of caspase-9.  相似文献   

18.
19.
The release of cytochrome c from mitochondria, which is regulated by Bcl-2 family members and is considered to take place through voltage-dependent anion channels (VDACs) on the outer membranes of mitochondria, results in activation of effector caspases, such as caspase-3, which induce apoptosis. We studied the involvement of the mitochondrial apoptosis pathway in uterine epithelial apoptosis. Estradiol-17beta pellets were implanted into ovariectomized mice and removed 4 days later (Day 0). The apoptotic index (percentage of apoptotic cells) of the luminal epithelium increased markedly, peaking on Day 2, whereas that of the glandular epithelium increased much less. Expression of VDAC1, 2, and 3 mRNAs increased in the luminal epithelium in correlation with the apoptotic index of the luminal epithelium. No increases in VDAC1, 2, and 3 mRNA levels were observed in the stroma or muscle, where no apoptosis occurs. VDAC1 protein levels in the uterus also correlated well with the apoptotic index of the luminal epithelium. In addition, the apoptotic index showed good correlation with the release of cytochrome c from mitochondria, activation of caspase-3, which was immunohistochemically detected only in the epithelium, and the mRNA and protein ratios of Bax:Bcl-2 and Bax:Bcl-X in the uterus. The present results suggest that the release of cytochrome c from mitochondria, which is regulated by Bcl-2 family members, plays a role in uterine epithelial apoptosis after estrogen deprivation. The increase in VDAC expression may facilitate the release of cytochrome c during apoptosis.  相似文献   

20.
Cadmium (Cd) is an extremely toxic metal capable of severely damaging several organs, including the brain. Studies have shown that Cd induces neuronal apoptosis partially by activating the mitogen-activated protein kinase (MAPK) pathways. However, the underlying mechanism of MAPK involving the mitochondrial apoptotic pathway in neurons remains unclear. In this study, primary rat cerebral cortical neurons were exposed to Cd, which significantly decreased cell viability and the B-cell lymphoma 2/Bcl-2 associate X protein (Bcl-2/Bax) ratio and increased the percentage of apoptotic cells, release of cytochrome c, cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP), and nuclear translocation of apoptosis-inducing factor (AIF). In addition, Cd induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2/Bax ratio, release of cytochrome c, cleavages of caspase-3 and PARP, and nuclear translocation of AIF. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathways play important roles in Cd-induced neuronal apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号