首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of chemotaxis by Salmonella typhimurium strain LT-2 to l-amino acids and to several sugars were quantitated by the Adler capillary procedure. Competition experiments indicated that LT-2 possesses three predominant receptors, or interacting sets of receptors, for amino acids. These were termed the aspartate, serine, and alanine classes, respectively. Studies with strains carrying point and deletion mutations affecting components of the phosphoenolpyruvate: glycose phosphotransferase system (PTS) made unlikely a role in primary reception of d-glucose by the three soluble PTS components, namely HPr, enzyme I, and factor III. A ptsG mutant defective in membrane-bound enzyme IIB' of the high-affinity glucose transport system was shown to exhibit normal chemotaxis providing pleiotropic effects of the mutation were eliminated by its genotypic combination with other pts mutations or, phenotypically, by addition of cyclic AMP and substrate. A correlation was demonstrated between chemotaxis to glucose and activity of the low-affinity glucose transport complex, membrane-bound enzymes IIB:IIA, and an enzyme IIB:IIA mutant was shown to have a preponderant defect in chemotaxis to glucose and mannose. Of four systems capable of galactose transport, only the beta-methylgalactoside transport system was implicated in chemotaxis to galactose. Some properties of a mutant possibly defective in processing of signals for chemotaxis to sugars is described.  相似文献   

2.
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.  相似文献   

3.
The bacterial phosphotransferase system (PTS) is the major transport system for many carbohydrates that are phosphorylated concomitantly with the translocation step through the membrane (group translocation). It consists of two general proteins, enzyme I and histidine protein (HPr), and a series of more than 15 substrate-specific enzymes II (EII). The sequences of several of these derived from Gram-positive and Gram-negative bacteria were compared, which allowed the possible identification of the following functional domains: membrane-bound pore, substrate-binding site, linker domains, transphosphorylation domain and primary phosphorylation site. Several EIIs have been analysed in the meantime, also by topological tests, by sequential deletion of the corresponding structural genes, and by construction of intergenic hybrids between different domains of several EIIs. These data suggest evolutionary relationships between different EIIs; they also enable a general model to be constructed of EIIs as carbohydrate transport systems, phosphotransferases, chemoreceptors in chemotaxis and as part of a global regulatory network.  相似文献   

4.

SUMMARY

The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.  相似文献   

5.
Listeria monocytogenes is a gram-positive bacterium whose carbohydrate metabolic pathways are poorly understood. We provide evidence for an inducible phosphoenolpyruvate (PEP):fructose phosphotransferase system (PTS) in this pathogen. The system consists of enzyme I, HPr, and a fructose-specific enzyme II complex which generates fructose-1-phosphate as the cytoplasmic product of the PTS-catalyzed vectorial phosphorylation reaction. Fructose-1-phosphate kinase then converts the product of the PTS reaction to fructose-1,6-bisphosphate. HPr was shown to be phosphorylated by [32P]PEP and enzyme I as well as by [32P]ATP and a fructose-1,6-bisphosphate-activated HPr kinase like those found in other gram-positive bacteria. Enzyme I, HPr, and the enzyme II complex of the Listeria PTS exhibit enzymatic cross-reactivity with PTS enzyme constituents from Bacillus subtilis and Staphylococcus aureus.  相似文献   

6.
Mutants of Escherichia coli K-12 defective in the mannitol-specific enzyme II complex of the phosphoenolpyruvate phosphotransferase system (PTS) or lacking mannitol-1-phosphate dehydrogenase have been isolated. These mutants fail only to grow on mannitol. Growth of the dehydrogenase-negative mutant on casein hydrolysate can be abruptly inhibited by exposure to mannitol. A mutant with constitutive expression of both of these enzymes has also been isolated. All three mutations are clustered in a region represented at min 71 of the Taylor map. In a mutant with less than 5% of the activity of enzyme I of the PTS, both the enzyme II complex and the dehydrogenase remain inducible by mannitol. In the mutant defective in the enzyme II complex, mannitol is able to induce the dehydrogenase. Thus, mannitol, rather than its phosphorylated product, seems to be the inducer.  相似文献   

7.
Mutations that uncouple glucose transport from phosphorylation were isolated in plasmid-encoded Escherichia coli enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). The uncoupled enzymes IIGlc were able to transport glucose in the absence of the general phosphoryl-carrying proteins of the PTS, enzyme I and HPr, although with relatively low affinity. Km values of the uncoupled enzymes IIGlc for glucose ranged from 0.5 to 2.5 mM, 2 orders of magnitude higher than the value of normal IIGlc. Most of the mutant proteins were still able to phosphorylate glucose and methyl alpha-glucoside (a non-metabolizable glucose analog specific for IIGlc), indicating that transport and phosphorylation are separable functions of the enzyme. Some of the uncoupled enzymes IIGlc transported glucose with a higher rate and lower apparent Km in a pts+ strain than in a delta ptsHI strain lacking the general proteins enzyme I and HPr. Since the properties of these uncoupled enzymes IIGlc in the presence of PTS-mediated phosphoryl transfer resembled those of wild-type IIGlc, these mutants appeared to be conditionally uncoupled. Sequencing of the mutated ptsG genes revealed that all amino acid substitutions occurred in a hydrophilic segment within the hydrophobic N-terminal part of IIGlc. These results suggest that this hydrophilic loop is involved in binding and translocation of the sugar substrate.  相似文献   

8.
The bacterial phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS) consists of several proteins whose primary functions are to transport and phosphorylate their substrates. The complexity of the PTS undoubtedly reflects its additional roles in chemotaxis to PTS substrates and in regulation of other metabolic processes in the cell. The PTS permeases (Enzymes II) are the membrane-associated proteins of the PTS that sequentially recognize, transport, and phosphorylate their specific substrates in separate steps, and theEscherichia coli mannitol permease is one of the best studied of these proteins. It consists of two cytoplasmic domains (EIIA and EIIB) involved in mannitol phosphorylation and an integral membrane domain (EIIC) which is sufficient to bind mannitol, but which transports mannitol at a rate that is dependent on phosphorylation of the EIIA and EIIB domains. Recent results show that several residues in a hydrophilic, 85-residue segment of the EIIC domain are important for the binding, transport, and phosphorylation of mannitol. This segment may be at least partially exposed to the cytoplasm of the cell. A model is proposed in which this region of the EIIC domain is crucial in coupling phosphorylation of the EIIB domain to transport through the EIIC domain of the mannitol permease.  相似文献   

9.
Carbohydrate Utilization in Lactobacillus sake   总被引:5,自引:2,他引:3       下载免费PDF全文
The ability of Lactobacillus sake to use various carbon sources was investigated. For this purpose we developed a chemically defined medium allowing growth of L. sake and some related lactobacilli. This medium was used to determine growth rates on various carbohydrates and some nutritional requirements of L. sake. Mutants resistant to 2-deoxy-d-glucose (a nonmetabolizable glucose analog) were isolated. One mutant unable to grow on mannose and one mutant deficient in growth on mannose, fructose, and sucrose were studied by determining growth characteristics and carbohydrate uptake and phosphorylation rates. We show here that sucrose, fructose, mannose, N-acetylglucosamine, and glucose are transported and phosphorylated by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS permease specific for mannose, enzyme II(supMan), was shown to be responsible for mannose, glucose, and N-acetylglucosamine transport. A second, non-PTS system, which was responsible for glucose transport, was demonstrated. Subsequent glucose metabolism involved an ATP-dependent phosphorylation. Ribose and gluconate were transported by PTS-independent permeases.  相似文献   

10.
Summary The phosphoenolpyruvate-dependent sugar transport system (PTS) is present in a large variety of bacteria. It catalyzes transport and phosphorylation of hexoses and hexitols at the expense of phosphoenolpyruvate. Only three of four enzymes are required for this entire sequence. Each component has been isolated and purified to the homogeneity from one bacterial species or another allowing recent investigations intomechanistic aspects of energy coupling, energy conservation, transport and regulation using well-characterized enzymes. In each case the phosphorylation of the enzyme is a key element in that enzymes function.The initial step in the energy conversion process is the EI catalyzed conversion of phosphoenolpyruvate to pyruvate and P-HPr. EII is a metal requiring hydrophobic enzyme which is active only as a dimer. Kinetic and gel filtration data confirm that it forms functional ternary complexes with HPr or P-Hpr and phosphoenolpyruvate or pyruvate which influence both the degree of dimerization and the specific activity of the dimer. The dimer appears to carry only one phosphoryl group suggesting that negative cooperativity or a flip-flop mechanism may be involved in the sequence of phosphoryl group transfer.Many of the PTS phosphoenzyme intermediates carry the phosphoryl group as a phospho-histidine. A general mechanism for the transfer of the phosphoryl group to and from the active site histidine residue in each protein has been established with high resolution 1H NMR data. At physiological pH the active site histidine is deprotonated, whereas the phosphohistidine is protonated. Consequently the histidine, as a strong nucleophile, can abstract the phosphoryl group from the donor while protonation destabilizes the phosphohistidine facilitating passage of the phosphoryl group to the following enzyme intermediate. The change in protonation state accompanies a phosphorylation induced conformational change in the carrier.The ability of the PTS to regulate the activity of other permeases and catabolic enzymes has been attributed to EIII Glc. Data obtained with mutants suggest that changes in the phosphorylation state alter the regulatory properties of the enzyme. The nonphosphorylated species blocks various permeases and suppresses adenylate cyclase activity thereby inhibiting the synthesis of catabolic enzyme systems. The phosphorylated species stimulates adenylate cyclase and permits the uptake of inducers leading to the initiation of catabolic enzyme synthesis. Experiments with the isolated EIII Glc confirm that a phosphoenzyme intermediate exists.Transport and phosphorylation of the sugar are catalyzed by a membrane-bound EII via a phosphoenzyme intermediate which can be reached from P-HPr, P-EIII or sugar-P. The phosphorylation state controls the affinity of the enzyme for its substrates. EII is high affinity for P-HPr or P-EIII and low affinity for sugar. P-EII is high affinity for sugar and low affinity for P-HPr or P-EIII. The affinity of the enzyme for sugar substrates is controlled by the oxidation state of a dithiol. The reduced, dithiol form is high affinity for sugar substrates. The oxidized, disulfide form, is low affinity. Phosphorylation of the enzyme chould shift the affinity for substrates by altering the oxidation state of the enzyme.  相似文献   

11.
An isogenic pair of Escherichia coli strains lacking (pssA) and possessing (wild-type) the enzyme phosphatidylserine synthase was used to estimate the effects of the total lack of phosphatidylethanolamine (PE), the major phospholipid in E. coli membranes, on the activities of several sugar permeases (enzymes II) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The mutant exhibits greatly elevated levels of phosphatidylglycerol (PG), a lipid that has been reported to stimulate the in vitro activities of several PTS permeases. The activities, thermal stabilities, and detergent sensitivities of three PTS permeases, the glucose enzyme II (IIGlc), the mannose enzyme II (IIMan) and the mannitol enzyme II (IIMtl), were characterized. Western blot analyses revealed that the protein levels of IIGlc were not appreciably altered by the loss of PE. In the pssA mutant, IIGlc and IIMan activities were depressed both in vivo and in vitro, with the in vivo transport activities being depressed much more than the in vitro phosphorylation activities. IIMtl also exhibited depressed transport activity in vivo but showed normal phosphorylation activities in vitro. IIMan and IIGlc exhibited greater thermal lability in the pssA mutant membranes than in the wild-type membranes, but IIMtl showed enhanced thermal stability. All three enzymes were activated by exposure to TritonX100 (0.4%) or deoxycholate (0.2%) and inhibited by SDS (0.1%), but IIMtl was the least affected. IIMan and, to a lesser degree, IIGlc were more sensitive to detergent treatments in the pssA mutant membranes than in the wild-type membranes while IIMtl showed no differential effect. The results suggest that all three PTS permeases exhibit strong phospholipid dependencies for transport activity in vivo but much weaker and differential dependencies for phosphorylation activities in vitro, with IIMan exhibiting the greatest and IIMtl the least dependency. The effects of lipid composition on thermal sensitivities and detergent activation responses paralleled the effects on in vitro phosphorylation activities. These results together with those previously published suggest that, while the in vivo transport activities of all PTS enzymes II require an appropriate anionic to zwitterionic phospholipid balance, the in vitro phosphorylation activities of these same enzymes show much weaker and differential dependencies. Alteration of the phospholipid composition of the membrane thus allows functional dissection of transport from the phosphorylation activities of PTS enzyme complexes.  相似文献   

12.
Chemotaxis of Escherichia coli toward phosphotransferase systems (PTSs)-carbohydrates requires phosphoenolpyruvate-dependent PTSs as well as the chemotaxis response regulator CheY and its kinase, CheA. Responses initiated by flash photorelease of a PTS substrates D-glucose and its nonmetabolizable analog methyl alpha-D-glucopyranoside were measured with 33-ms time resolution using computer-assisted motion analysis. This, together with chemotactic mutants, has allowed us to map out and characterize the PTS chemotactic signal pathway. The responses were absent in mutants lacking the general PTS enzymes EI or HPr, elevated in PTS transport mutants, retarded in mutants lacking CheZ, a catalyst of CheY autodephosphorylation, and severely reduced in mutants with impaired methyl-accepting chemotaxis protein (MCP) signaling activity. Response kinetics were comparable to those triggered by MCP attractant ligands over most of the response range, the most rapid being 11.7 +/- 3.1 s-1. The response threshold was <10 nM for glucose. Responses to methyl alpha-D-glucopyranoside had a higher threshold, commensurate with a lower PTS affinity, but were otherwise kinetically indistinguishable. These facts provide evidence for a single pathway in which the PTS chemotactic signal is relayed rapidly to MCP-CheW-CheA signaling complexes that effect subsequent amplification and slower CheY dephosphorylation. The high sensitivity indicates that this signal is generated by transport-induced dephosphorylation of the PTS rather than phosphoenolpyruvate consumption.  相似文献   

13.
14.
The main mechanism causing catabolite repression in Escherichia coli is the dephosphorylation of enzyme IIAGlc, one of the enzymes of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS is involved in the uptake of a large number of carbohydrates that are phosphorylated during transport, phosphoenolpyruvate (PEP) being the phosphoryl donor. Dephosphorylation of enzyme IIAGlc causes inhibition of uptake of a number of non-PTS carbon sources, a process called inducer exclusion. In this paper, we show that dephosphorylation of enzyme IIAGlc is not only caused by the transport of PTS carbohydrates, as has always been thought, and that an additional mechanism causing dephosphorylation exists. Direct monitoring of the phosphorylation state of enzyme IIAGlc also showed that many carbohydrates that are not transported by the PTS caused dephosphorylation during growth. In the case of glucose 6-phosphate, it was shown that transport and the first metabolic step are not involved in the dephosphorylation of enzyme IIAGlc, but that later steps in the glycolysis are essential. Evidence is provided that the [PEP]–[pyruvate] ratio, the driving force for the phosphorylation of the PTS proteins, determines the phosphorylation state of enzyme IIAGlc. The implications of these new findings for our view on catabolite repression and inducer exclusion are discussed.  相似文献   

15.
Gram-negative bacteria are able to respond chemotactically to carbohydrates which are substrates of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS). The mechanism of signal transduction in PTS-mediated chemotaxis is different from the well-studied mechanism involving methyl-accepting chemotaxis proteins (MCPs). In PTS-mediated chemotaxis, carbohydrate transport is required, and phosphorylation seems to be involved in both excitation and adaptation. In this review the roles of the components of the PTS in chemotactic signal transduction are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The mannitol-specific enzyme II (mannitol permease) of the Escherichia coli phosphotransferase system (PTS) catalyzes the concomitant transport and phosphorylation of D-mannitol. Previous studies have shown that the mannitol permease (637 amino acid residues) consists of 2 structural domains of roughly equal size: an N-terminal, hydrophobic, membrane-bound domain and a C-terminal, hydrophilic, cytoplasmic domain. The C-terminal domain can be released from the membrane by mild proteolysis of everted membrane vesicles [Stephan, M.M., & Jacobson, G.R. (1986) Biochemistry 25, 8230-8234]. In this report, we show that phosphorylation of the intact permease by [32P]HPr (a general phosphocarrier protein of the PTS) followed by tryptic separation of the two domains resulted in labeling of only the C-terminal domain. Phosphorylation of the C-terminal domain occurred even in the complete absence of the N-terminal domain, showing that the former contains most, if not all, of the critical residues comprising the interaction site for phospho-HPr. The phosphorylated C-terminal domain, however, could not transfer its phospho group to mannitol, suggesting that the N-terminal domain is necessary for mannitol binding and/or phosphotransfer from the enzyme to the sugar. The elution profile of the C-terminal domain after molecular sieve chromatography showed that the isolated domain is monomeric, unlike the native permease which is likely a dimer in the membrane. Experiments employing a deletion mutation of the mtlA gene, which encodes a protein lacking the first phosphorylation site in the C-terminal domain (His-554) but retaining the second phosphorylation site (Cys-384), demonstrated that a phospho group could be transferred from phospho-HPr to Cys-384 of the deletion protein, and then to mannitol, only in the presence of the full-length permease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
HPr is a protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) that participates in the concomitant transport and phosphorylation of sugars in bacteria. In gram-positive bacteria, HPr is also reversibly phosphorylated at a seryl residue at position 46 (Ser-46) by a metabolite-activated ATP-dependent kinase and a Pi-dependent HPr(Ser-P) phosphatase. We report in this article the isolation of a spontaneous mutant (mutant A66) from a streptococcus (Streptococcus salivarius) in which the methionine at position 48 (Met-48) in the protein HPr has been replaced by a valine (Val). The mutation inhibited the phosphorylation of HPr on Ser-46 by the ATP-dependent kinase but did not prevent phosphorylation of HPr by enzyme I or the phosphorylation of enzyme II complexes by HPr(His-P). The results, however, suggested that replacement of Met-48 by Val decreased the affinity of enzyme I for HPr or the affinity of enzyme II proteins for HPr(His-P) or both. Characterization of mutant A66 demonstrated that it has pleiotropic properties, including the lack of IIILman, a specific protein of the mannose PTS; decreased levels of HPr; derepression of some cytoplasmic proteins; reduced growth on PTS as well as on non-PTS sugars; and aberrant growth in medium containing a mixture of sugars.  相似文献   

19.
In Salmonella typhimurium, glucose, mannose, and fructose are normally transported and phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system. We have investigated the transport of these sugars and their non-metabolizable analogs in mutant strains lacking the phospho-carrier proteins of the phosphoenolpyruvate:sugar phosphotransferase system, the enzymes I and HPr, to determine whether the sugar-specific, membrane-bound components of the phosphonenolpyruvate: sugar phosphotransferase system, the enzymes II, can catalyze the uptake of these sugars in the absence of phosphorylation. This process does not occur. We have also isolated mutant strains which lack enzyme I and HPr, but have regained the ability to grow on mannose or fructose. These mutants contained elevated levels of mannokinase (fructokinase). In addition, growth on mannose required constitutive synthesis of the galactose permease. When strains were constructed which lacked the galactose permease, they were unable to grow even on high concentrations of mannose, although elevated levels of mannokinase (fructokinase) were present. These results substantiate the conclusion that the enzymes II of the phosphoenolpyruvate:sugar phosphotransferase system are unable to carry out facilitated diffusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号