首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang MH  So EC  Liu YC  Wu SN 《Steroids》2006,71(2):129-140
The effects of glucocorticoids on ion currents were investigated in pituitary GH3 and AtT-20 cells. In whole-cell configuration, dexamethasone, a synthetic glucocorticoid, reversibly increased the density of Ca2+ -activated K+ current (IK(Ca)) with an EC50 value of 21 +/- 5 microM. Dexamethasone-induced increase in IK(Ca) density was suppressed by paxilline (1 microM), yet not by glibenclamide (10 microM), pandinotoxin-Kalpha (1 microM) or mifepristone (10 microM). Paxilline is a blocker of large-conductance Ca2+ -activated K+ (BKCa) channels, while glibenclamide and pandinotoxin-Kalpha are blockers of ATP-sensitive and A-type K+ channels, respectively. Mifepristone can block cytosolic glucocorticoid receptors. In inside-out configuration, the application of dexamethasone (30 microM) into the intracellular surface caused no change in single-channel conductance; however, it did increase BKCa -channel activity. Its effect was associated with a negative shift of the activation curve. However, no Ca2+ -sensitiviy of these channels was altered by dexamethasone. Dexamethasone-stimulated channel activity involves an increase in mean open time and a decrease in mean closed time. Under current-clamp configuration, dexamethasone decreased the firing frequency of action potentials. In pituitary AtT-20 cells, dexamethasone (30 microM) also increased BKCa -channel activity. Dexamethasone-mediated stimulation of IK(Ca) presented here that is likely pharmacological, seems to be not linked to a genomic mechanism. The non-genomic, channel-stimulating properties of dexamethasone may partly contribute to the underlying mechanisms by which glucocorticoids affect neuroendocrine function.  相似文献   

2.
Summary The action of GRF on GH3 cell membrane was examined by patch electrode techniques. Under current clamp with patch elecrtrode, spontaneous action potentials were partially to totally eliminated by application of GRF. In the case of partial elimination, the duration of remaining spontaneous action potentials was prolonged and the amplitude of afterhyperpolarization was decreased. The evoked actiion potential in the cells which did not show spontaneous action potentials was also eliminated by GRF. In order to examine what channels were affected by GRF, voltage-clamp analysis was performed. It was revealed that voltage-gated Ca2+ channel current and Ca2+-induced K+ channels current were decreased by GRF, while voltage-gated Na+ channel and delayed K+ channel current was considered to be a consequence of he decrease of voltage-gated Ca2+ channels current. Therefore it is likely that the effect of GRF on GH3 cells was due to the block of voltage-gated Ca2+ channels. The elimination of action potential under current clamp corresponded to the block of voltage-gated Ca2+ channels and the prolongation of action potential could be explained by the decrease of Ca2+-induced K+ channel current. The amplitude decrease of afterhyperpolarization could also be explained by the reduction of Ca2+-induced K+ channel current. Thus the results under current clamp well coincide with the results under voltage clamp. Hormone secretion from GH3 cells was not stimulated by GRF. However, the finding that GRF solely blocked voltage-gated Ca2+ channel suggested the specific action of GRF on GH3 cell membranes.  相似文献   

3.
The effects of the natural polyamines, putrescine, spermidine and spermine on single calcium-activated potassium channels from clonal rat pituitary tumor cells (GH3) were studied. Applied to inside-out patches, polyamines were found to reduce the current amplitude and open probability of the channels in a dose- and voltage-dependent manner, indicating that polyamines act as fast blockers which sense a fraction of the electrical field in the channel pore. The K d for spermine was 11.2 mm for the reduction of unitary current amplitude and 0.7 mm for the reduction of the open probability. The order of effectiveness was spermine > spermidine > putrescine. From fitting -functions to current amplitude histograms, blocking and unblocking rates were determined as 11.4 × 104 sec–1 and 21.9 × 104 sec–1, respectively. The reduction of the channel open probability was relieved by an increase of the Ca2+ concentration of the internal solution, indicating that polyamines compete with Ca2+ at the Ca2+ sensor of the channel. Putrescine antagonized the effect of spermine on the channel current amplitude. The results suggest that polyamines at intracellular millimolar concentrations suppress ion channel activity and therefore may effect electrical discharge behavior of excitable cells.This work was supported in part by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, P8587.  相似文献   

4.
The effects of parathyroid hormone (PTH) on cytoplasmic free CA2+ (Ca i 2+ ) and cAMP-formation were investigated in the rat osteosarcoma cell line UMR 106-01.In fura-2 loaded adherent single cells bPTH 1-34 (10 nM–1M) induced a rapid transient increase in Ca i 2+ in 11% of the studied cells. In fura-2 tracings from UMR 106-01 cells in suspension, bPTH 1-34 (0.1 M) induced a transient increase in Ca i 2+ in 20% of the experiments. The transient increase in Ca i 2+ seen in suspensions of cells was not abolished by addition of EGTA (2.5 mM) prior to challenge with PTH, suggesting that the increase in Ca i 2+ was derived from intracellular stores.A marked rapid increase in cAMP-formation was observed in all experiments with cells in suspension, also in the experiments where PTH did not affect Ca i 2+ .These data show that PTH causes a release of Ca2+ from intracellular stores in a small percentage of osteosarcoma UMR 106-01 cells, and that PTH is capable of inducing an increase in cAMP-formation without affecting Ca i 2+ in osteoblasts.  相似文献   

5.
The difference of Ca(2+) mobilization induced by muscarinic receptor activation between parotid acinar and duct cells was examined. Oxotremorine, a muscarinic-cholinergic agonist, induced intracellular Ca(2+) release and extracellular Ca(2+) entry through store-operated Ca(2+) entry (SOC) and non-SOC channels in acinar cells, but it activated only Ca(2+) entry from non-SOC channels in duct cells. RT-PCR experiments showed that both types of cells expressed the same muscarinic receptor, M3. Given that ATP activated the intracellular Ca(2+) stores, the machinery for intracellular Ca(2+) release was intact in the duct cells. By immunocytochemical experiments, IP(3)R2 colocalized with M3 receptors in the plasma membrane area of acinar cells; in duct cells, IP(3)R2 resided in the region on the opposite side of the M3 receptors. On the other hand, purinergic P2Y2 receptors were found in the apical area of duct cells where they colocalized with IP(3)R2. These results suggest that the expression of the IP(3)Rs near G-protein-coupled receptors is necessary for the activation of intracellular Ca(2+) stores. Therefore, the microenvironment probably affects intracellular Ca(2+) release and Ca(2+) entry.  相似文献   

6.
Huang MH  Wu SN  Chen CP  Shen AY 《Life sciences》2002,70(10):1185-1203
Quinones have been shown to possess antineoplastic activity; however, their effects on ionic currents remain unclear. The effects of 2-mercaptophenyl-1,4-naphthoquinone (2-MPNQ), menadione (MD) and 1,4-naphthoquinone (1,4 NQ) on cell proliferation and ionic currents in pituitary GH3 lactotrophs were investigated in this study. 2-MPNQ was more potent than menadione or 1,4-naphthoquinone in inhibiting the growth of GH3 cells. 2-MPNQ decreased cell proliferation in a concentration-dependent manner with an IC50 value of 3 microM. In whole-cell recording experiments, 2-MPNQ reversibly caused an inhibition of Ca2+-activated K+ current (I(K(Ca)) in a concentration-dependent manner. The IC50 value for 2-MPNQ-induced inhibition of I(K(Ca)) was 7 microM. In the inside-out configuration of single channel recording, 2-MPNQ (30 microM) applied intracellularly suppressed the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels but did not modify single channel conductance. Menadione (30 microM) had no effect on the channel activity, whereas 1,4-naphthoquinone (30 microM) suppressed it by about 26%. Both 2-MPNQ and thimerosal suppressed the dithiothreitol-stimulated channel activity. 2-MPNQ also blocked voltage-dependent K+ currents, but it produced a slight reduction of L-type Ca2+ inward current. However, unlike E-4031, 2-MPNQ (30 microM) did not suppress inwardly rectifying K+ current present in GH3 cells. Under the current clamp configuration, the presence of 2-MPNQ (30 microM) depolarized the cells, and increased the frequency and duration of spontaneous action potentials. The 2-MPNQ-mediated inhibition of K+ currents would affect hormone secretion and cell excitability. The blockade of these ionic channels by 2-MPNQ may partly explain its inhibitory effect on the proliferation of GH3 cells.  相似文献   

7.
Respiring rat liver mitochondria are known to spontaneously release the Ca2+ taken up when they have accumulated Ca2+ over a certain threshold, while Sr2+ and Mn2+ are well tolerated and retained. We have studied the interaction of Sr2+ with Ca2+ release. When Sr2+ was added to respiring mitochondria simultaneously with or soon after the addition of Ca2+, the release was potently inhibited or reversed. On the other hand, when Sr2+ was added before Ca2+, the release was stimulated. Ca2+-induced mitochondrial damage and release of accumulated Ca2+ is generally believed to be due to activation of mitochondrial phospholipase A (EC 3.1.1.4.) by Ca2+. However, isolated mitochondrial phospholipase A activity was little if at all inhibited by Sr2+. The Ca2+ -release may thus be triggered by some Ca2+ -dependent function other than phospholipase.  相似文献   

8.
Ca2+ transients and the rate of Ca2+ release (dCaREL/dt) from the sarcoplasmic reticulum (SR) in voltage-clamped, fast-twitch skeletal muscle fibers from the rat were studied with the double Vaseline gap technique and using mag-fura-2 and fura-2 as Ca2+ indicators. Single pulse experiments with different returning potentials showed that Ca2+ removal from the myoplasm is voltage independent. Thus, the myoplasmic Ca2+ removal (dCaREM/dt) was studied by fitting the decaying phase of the Ca2+ transient (Melzer, Ríos & Schneider, 1986) and dCaREL/dt was calculated as the difference between dCa/dt and dCaREM/dt. The fast Ca2+ release decayed as a consequence of Ca2+ inactivation of Ca2+ release. Double pulse experiments showed inactivation of the fast Ca2+ release depending on the prepulse duration. At constant interpulse interval, long prepulses (200 msec) induced greater inactivation of the fast Ca2+ release than shorter depolarizations (20 msec). The correlation (r) between the myoplasmic [Ca2+]i and the inhibited amount of Ca2+ release was 0.98. The [Ca2+]i for 50% inactivation of dCaREL/dt was 0.25 m, and the minimum number of sites occupied by Ca2+ to inactivate the Ca2+ release channel was 3.0. These data support Ca2+ binding and inactivation of SR Ca2+ release.This work was supported by Grant-in-Aid from the American Heart Association (National) and Muscular Dystrophy Association (USA). Part of this work was developed in Dr. Stefani's laboratory at Baylor College of Medicine.  相似文献   

9.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

10.
[3H]Purine release from rat striatum astrocyte cultures was studied at 14 days in vitro (DIV). Superfusion of cultures with a Ca2+-free medium +0.5 mM ethylene glycol-bis(-aminoethylether)N,N,N,N-tetracetic acid (EGTA) reduced the electrically evoked [3H]purine release. Nimodipine only at the concentration of 10 M modified [3H]purine outflow whereas 0.1 M -conotoxin and 0.03–0.1 M nitrendipine reduced the evoked one. Superfusion of cultures with 0.1 M -conotoxin +0.1 M nitrendipine antagonized the evoked [3H]purine release similarly to each drug given alone. Neither nitrendipine nor -conotoxin influenced the uptake of45Ca2+ by the cultures. The treatment of cells with the Ca2+ agonist Bay K 8644 did not affect [3H]purine release or the45Ca2+ uptake. The drug did not either alter [Ca2+]i, evaluated by loading the cells with 3 M Fura-2/AM. 10–30 M 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8), a blocker of intracellular Ca2+ discharge, significantly reduced the evoked [3H]purine release. On the other hand, 2 M thapsigargin, an inhibitor of the ion store Ca2+ ATPase, was able to increase either the culture [3H]purine release or the [Ca2+]i. Together, the findings indicate that voltage-sensitive calcium channels (VSCCs) of the neuronal N and L-types are not involved in the modulation of [3H]purine release from rat cultured astrocytes whereas Ca2+ coming from intracytoplasmic stores seems to play a prevailing role. Moreover, agents which block VSCCs seem to be able to affect [3H]purine outflow with mechanisms other than VSCC gating.  相似文献   

11.
Summary The role of Ca2+ in the stimulation by antidiuretic hormone (ADH) of active sodium transport across the isolated epithelium of frog skin was investigated. This has been done by bathing the blood side with Ca2+-free solution containing 0.1mm EGTA. This Ca2+ depletion halved the resistance but had no significant effect on the short-circuit current (SCC). The sensitivity of both cAMP- and SCC-stimulation to ADH was increased 40-fold by Ca2+ depletion. Sensitivity to stimulation by theophylline was only changed a little, while stimulation by exogenous cAMP was completely unaltered. The increase in sensitivity to ADH was dependent on the duration of preincubation in Ca2+-free solution, which indicates that a slowly exchanging Ca2+ pool is involved in the determination of sensitivity to ADH. We suggest this pool is of cellular origin and the increased sensitivity is due to the decrease of a Ca2+ inhibition of the ADH-stimulated adenylate cyclase. But a direct effect of Ca2+ on binding of ADH to the receptor cannot be excluded. Our results are not compatible with the hypothesis that entry of extracellular Ca2+ is an obligatory step in the natriferic action of ADH, although it may be so in the hydroosmotic action of ADH. We also found the maximal response to ADH to be higher after Ca2+ depletion. This is in agreement with the hypothesis of intracellular Ca2+ as a modulator of the sodium permeability of the outward-facing membrane.  相似文献   

12.
We have studied β-adrenergic stimulation of cyclic AMP formation in fragmented membranes and in unsealed or resealed ghosts prepared from rat reticulocytes. The maximal rate of isoprenaline-stimulated cyclic AMP formation with saturating MgATP concentrations and in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine was 5–8 nmol/min per ml ghosts are remained constant for at least 15 min. Transition from resealed ghosts to fragmented membranes was associated with a shift of the activation constant (Ka) for (±)-isoprenaline from 0.1 to 0.6 μM. The apparent dissociation constant for propranolol (0.01 μM) remained unchanged. The Ka values for isoprenaline in native reticulocytes and in resealed ghosts were identi The stimulating effect of NaF on cyclic AMP formation in resealed ghosts reached 15% of maximal β-adrenergic stimulation. Cyclic AMP formation, both in fragmented membranes and in ghosts, was half-maximally inhibited with Ca2+ concentrations ranging between 0.1 and 1 μM. GTP stimulated iosprenaline-dependent cyclic AMP formation in unsealed ghosts and in fragmented reticulocyte membranes by a factor of 3–5 but did not change the Ka value for isoprenaline. Ka values for the guanylnucleotides in different experiments varied between 0.3 and 2 μM. Ca2+ concentrations up to 4.6 μM reduced the maximal activation by GTP and Gpp(NH)p but did not affect their Ka values. Compared to GTP, maximal activation by Gpp(NH)p was higher in fragmented membranes, but much lower in ghosts. Our results suggest that the native β-receptor adenylate cyclase system of reticulocytes is more closely approximated in the ghost model than in fragmented membrane preparations. Membrane properties seem to modulate the actions of guanylnucleotides on isoprenaline-dependent cyclic AMP formation in ghosts. Some of these effects are not observed in isolated membranes.  相似文献   

13.
We studied the release of [3H]d-aspartate evoked by glutamate receptor agonists from monolayer cultures of chick retina cells, and found that activation of the glutamate receptors can evoke both Ca2+-dependent and Ca2+-independent release of [3H]d-aspartate. In Ca2+-free (no added Ca2+) Na+ medium, the agonists of the glutamate receptors induced the release of [3H]d-aspartate with the following rank order of potency: kainate>α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)∼N-methyl-d-aspartate (NMDA). In media containing 1 mM CaCl2 the release of [3H]d-aspartate evoked by NMDA, kainate and AMPA was increased by about 112%, 20% and 39%, respectively, as compared to the release evoked by the same agonists in Ca2+-free medium. NMDA was the most potent agonist in stimulating the Ca2+-dependent release of [3H]d-aspartate, possibly by exocytosis, and AMPA was as potent as kainate. The Ca2+-dependent release of [3H]d-aspartate evoked by kainate was dependent on the influx of Ca2+ through the receptor associated channel, as well as through the N- (ω-Conotoxin GVIA-sensitive) and L- (nitrendipine-sensitive)type voltage-sensitive Ca2+ channels (VSCC). The exocytotic release of [3H]d-aspartate evoked by AMPA relied exclusively on Ca2+ entry through the L-type VSCC, whereas the effect of NMDA was partially mediated by the influx of Ca2+ through the receptor-associated channel, but not through L- or N-type VSCC. Thus, activation of these different glutamate receptors under physiological conditions is expected to cause the release of cytosolic and vesicular glutamate, and the routes of Ca2+ entry modulating vesicular release may be selectively recruited.  相似文献   

14.
Regulatory role of prolactin (PRL) on Ca2+ mobilization in human mammary gland cell line MCF-7 was examined. Direct addition of PRL did not affect cytoplasmic Ca2+ concentration ([Ca2+]i); however, treatment with PRL for 24h significantly decreased the peak level and duration time of [Ca2+]i elevation evoked by ATP or thapsigargin (TG). Intracellular Ca2+ release by IP3 or TG in permeablized cells was not decreased after PRL-treatment, indicating that the Ca2+ release was not impaired by PRL treatment. Extracellular Ca2+ entry evoked by ATP or TG was likely to be intact, because entry of extracellular Ba2+ was not affected by PRL treatment. Among Ca2+-ATPases expressed in MCF-7 cells, we found significant increase of secretory pathway Ca2+-ATPase type 2 (SPCA2) mRNA in PRL-treated cells by RT-PCR experiments including quantitative RT-PCR. Knockdown of SPCA2 by siRNA in PRL-treated cells showed similar Ca2+ mobilization to that in PRL-untreated cells. The present results suggest that PRL facilitates Ca2+ transport into Golgi apparatus and may contribute the supply of Ca2+ to milk.  相似文献   

15.
The effect of regucalcin, a Ca2+-binding protein, on Ca2+ transport system in rat renal cortex microsomes was investigated. The presence of regucalcin (10-8 to 10-6 M) in the reaction mixture caused a significant increase in Ca2+-ATPase activity and ATP-dependent45 Ca2+ uptake in the microsomes. Regucalcin (10-7 M) increased Ca2+-ATPase activity independently of increasing concentrations of CaCl_2. The microsomal Ca2+-ATPase activity and45 Ca2+ uptake were markedly decreased by the presence of vanadate (0.1 mM) or N-ethylmaleimide (NEM; 5 mM) in the absence or presence of regucalcin. Dithiothreitol (DTT; 5 mM) markedly elevated Ca2+-ATPase activity and 45Ca2+ uptake in the microsomes. The DTT effects were not further enhanced by regucalcin (10-7 M). Meanwhile, the microsomal Ca2+-ATPase activity and 45Ca2+ uptake were significantly decreased by the presence of dibutyryl cyclic AMP (DcAMP; 10-5 and 10-3 M) or inositol 1,4, 5-trisphosphate (IP3; 10-7 and 10-5 M). The effect of regucalcin (10-7 M) on Ca2+ ATPase activity and 45Ca2+ uptake was weakened in the presence of DcAMP or IP3. The present results demonstrate that regucalcin has a stimulatory effect on ATP-dependent Ca2+ uptake in the microsomes of rat renal cortex due to acting on the thiol groups of Ca2+-ATPase.  相似文献   

16.
The association of an endogenous, Ca2+-dependent cysteine-protease with the junctional sarcoplasmic reticulum (SR) is demonstrated. The activity of this protease is strongly stimulated by dithiothreitol (DTT), cysteine and β-mercaptoethanol, and is inhibited by iodoacetamide, mercuric chloride and leupeptin, but not by PMSF. The activity of this thiol-protease is dependent on Ca2+ with half-maximal activity obtained at 0.1 μm and maximal activity at 10 μm. Mg2+ is also an activator of this enzyme (CI50=22 μm). These observations, together with the neutral pH optima and inhibition by the calpain I inhibitor, suggest that this enzyme is of calpain I type. This protease specifically cleaves the ryanodine receptor monomer (510 kD) at one site to produce two fragments with apparent molecular masses of 375 and 150 kD. The proteolytic fragments remain associated as shown by purification of the cleaved ryanodine receptor. The calpain binding site is identified as a PEST (proline, glutamic acid, serine, threonine-rich) region in the amino acid sequence GTPGGTPQPGVE, at positions 1356–1367 of the RyR and the cleavage site, the calmodulin binding site, at residues 1383–1400. The RyR cleavage by the Ca2+-dependent thiol-protease is prevented in the presence of ATP (1–5 mm) and by high NaCl concentrations. This cleavage of the RyR has no effect on ryanodine binding activity but stimulates Ca2+ efflux. A possible involvement of this specific cleavage of the RyR/Ca2+ release channel in the control of calpain activity is discussed.  相似文献   

17.
The universal signal for egg activation at fertilization is a rise in cytoplasmic Ca(2+) with defined spatial and temporal kinetics. Mammalian and amphibian eggs acquire the ability to produce such Ca(2+) signals during a maturation period that precedes fertilization and encompasses resumption of meiosis and progression to metaphase II. In Xenopus, immature oocytes produce fast, saltatory Ca(2+) waves that can be oscillatory in nature in response to IP(3). In contrast, mature eggs produce a single continuous, sweeping Ca(2+) wave in response to IP(3) or sperm fusion. The mechanisms mediating the differentiation of Ca(2+) signaling during oocyte maturation are not well understood. Here, I characterized elementary Ca(2+) release events (Ca(2+) puffs) in oocytes and eggs and show that the sensitivity of IP(3)-dependent Ca(2+) release is greatly enhanced during oocyte maturation. Furthermore, Ca(2+) puffs in eggs have a larger spatial fingerprint, yet are short lived compared to oocyte puffs. Most interestingly, Ca(2+) puffs cluster during oocyte maturation resulting in a continuum of Ca(2+) release sites over space in eggs. These changes in the spatial distribution of elementary Ca(2+) release events during oocyte maturation explain the continuous nature and slower speed of the fertilization Ca(2+) wave.  相似文献   

18.
Ca(2+)-induced Ca2+ release (CICR) occurs in frog motor nerve terminals after ryanodine receptors (RyRs) are primed for activation by conditioning large Ca2+ entry. We studied which type of RyR exists, whether CICR occurs without conditioning Ca2+ entry and how RyRs are primed. Immunohistochemistry revealed the existence of RyR3 in motor nerve terminals and axons and both RyR1 and RyR3 in muscle fibers. A blocker of RyR, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride (TMB-8) slightly decreased rises in intracellular Ca2+ ([Ca2+]i) induced by a short tetanus (50 Hz, 1-2s), but not after treatment with ryanodine. Repetitive tetani (50 Hz for 15s every 20s) produced repetitive rises in [Ca2+]i, whose amplitude overall waxed and waned. TMB-8 blocked the waxing and waning components. Ryanodine suppressed a slow increase in end-plate potentials (EPPs) induced by stimuli (33.3 Hz, 15s) in a low Ca2+, high Mg2+ solution. KN-62, a blocker of Ca(2+)/calmoduline-activated protein kinase II (CaMKII), slightly reduced short tetanus-induced rises in [Ca2+]i, but markedly the slow waxing and waning rises produced by repetitive tetani in both normal and low Ca2+, high Mg2+ solutions. Likewise, KN-62, but not KN-04, an inactive analog, suppressed slow increases in EPP amplitude and miniature EPP frequency during long tetanus. Thus, CICR normally occurs weakly via RyR3 activation by single impulse-induced Ca2+ entry in frog motor nerve terminals and greatly after the priming of RyR via CaMKII activation by conditioning Ca2+ entry, thus, facilitating transmitter exocytosis and its plasticity.  相似文献   

19.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway. Supported by the National Natural Science Foundation of China (Grant No. 200830870910).  相似文献   

20.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号