首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Surface activity and sensitivity to inhibition from phospholipase A2 (PLA2), lysophosphatidylcholine (LPC), and serum albumin were studied for a synthetic C16:0 diether phosphonolipid (DEPN-8) combined with 1.5% by weight of mixed hydrophobic surfactant proteins (SP)-B/C purified from calf lung surfactant extract (CLSE). Pure DEPN-8 had better adsorption and film respreading than the major lung surfactant phospholipid dipalmitoyl phosphatidylcholine and reached minimum surface tensions <1 mN/m under dynamic compression on the Wilhelmy balance and on a pulsating bubble surfactometer (37 degrees C, 20 cycles/min, 50% area compression). DEPN-8 + 1.5% SP-B/C exhibited even greater adsorption and had overall dynamic surface tension lowering equal to CLSE on the bubble. In addition, films of DEPN-8 + 1.5% SP-B/C on the Wilhelmy balance had better respreading than CLSE after seven (but not two) cycles of compression-expansion at 23 degrees C. DEPN-8 is structurally resistant to degradation by PLA2, and DEPN-8 + 1.5% SP-B/C maintained high adsorption and dynamic surface activity in the presence of this enzyme. Incubation of CLSE with PLA2 led to chemical degradation, generation of LPC, and reduced surface activity. DEPN-8 + 1.5% SP-B/C was also more resistant than CLSE to direct biophysical inhibition by LPC, and the two were similar in their sensitivity to biophysical inhibition by serum albumin. These findings indicate that synthetic surfactants containing DEPN-8 combined with surfactant proteins or related synthetic peptides have potential utility for treating surfactant dysfunction in inflammatory lung injury.  相似文献   

2.
The content-dependent activity of surfactant protein (SP)-B was studied in mixtures with dipalmitoyl phosphatidylcholine (DPPC), synthetic lipids (SL), and purified phospholipids (PPL) from calf lung surfactant extract (CLSE). At fixed SP-B content, adsorption and dynamic surface tension lowering were ordered as PPL/SP-B approximately SL/SP-B > DPPC/SP-B. All mixtures were similar in having increased surface activity as SP-B content was incrementally raised from 0.05 to 0.75% by weight. SP-B had small but measurable effects on interfacial properties even at very low levels < or =0.1% by weight. PPL/SP-B (0.75%) had the highest adsorption and dynamic surface activity, approaching the behavior of CLSE. All mixtures containing 0.75% SP-B reached minimum surface tensions <1 mN/m in pulsating bubble studies at low phospholipid concentration (1 mg/ml). Mixtures of PPL or SL with SP-B (0.5%) also had minimum surface tensions <1 mN/m at 1 mg/ml, whereas DPPC/SP-B (0.5%) reached <1 mN/m at 2.5 mg/ml. Physiological activity also was strongly dependent on SP-B content. The ability of instilled SL/SP-B mixtures to improve surfactant-deficient pressure-volume mechanics in excised lavaged rat lungs increased as SP-B content was raised from 0.1 to 0.75% by weight. This study emphasizes the crucial functional activity of SP-B in lung surfactants. Significant differences in SP-B content between exogenous surfactants used to treat respiratory disease could be associated with substantial activity variations.  相似文献   

3.
This paper reports the chemical synthesis and purification of a novel phospholipase-resistant C16:0, C16:1 diether phosphonoglycerol with structural analogy to ester-linked anionic phosphatidylglycerol (PG) in endogenous pulmonary surfactant. This diether phosphonoglycerol (PG 1) is studied for phospholipase A(2) (PLA(2)) resistance and for surface activity in synthetic exogenous surfactants combined with Super Mini-B (S-MB) peptide and DEPN-8, a previously-reported diether phosphonolipid analog of dipalmitoyl phosphatidylcholine (DPPC, the major zwitterionic phospholipid in native lung surfactant). Activity experiments measured both adsorption and dynamic surface tension lowering due to the known importance of these surface behaviors in lung surfactant function in vivo. Synthetic surfactants containing 9 : 1 DEPN-8:PG 1 + 3% S-MB were resistant to degradation by PLA(2) in chromatographic studies, while calf lung surfactant extract (CLSE, the substance of the bovine clinical surfactant Infasurf?) was significantly degraded by PLA(2). The 9 : 1 DEPN-8:PG 1 + 3% S-MB mixture also had small but consistent increases in both adsorption and dynamic surface tension lowering ability compared to DEPN-8 + 3% S-MB. Consistent with these surface activity increases, molecular dynamics simulations using Protein Modeller, GROMACS force-field, and PyMOL showed that bilayers containing DPPC and palmitoyl-oleoyl-PC (POPC) as surrogates of DEPN-8 and PG 1 were penetrated to a greater extent by S-MB peptide than bilayers of DPPC alone. These results suggest that PG 1 or related anionic phosphono-PG analogs may have functional utility in phospholipase-resistant synthetic surfactants targeting forms of acute pulmonary injury where endogenous surfactant becomes dysfunctional due to phospholipase activity in the innate inflammatory response.  相似文献   

4.
Several protocols for purification of milligram quantities of lung surfactant proteins (SP)-B and SP-C were studied for separation efficiency and surface activity of the isolated proteins recombined with synthetic phospholipids (SPL). SP-B and SP-C were obtained from calf lung surfactant extract by C8 chromatography with isocratic elution by either of three solvent systems: 7:1:0.4 MeOH/CHCl(3)/5% 0.1 M HCl (solvent A), 7:1 MeOH/CHCl(3)+ 0.1% TFA (solvent B), and 7:1:0.4 MeOH/CHCl(3)/H(2)O + 0.1% TFA (solvent C). Solvents A and C yielded pure apoprotein in a single pass, with estimated total protein recoveries of >85 and >90%, respectively. Solvent B was less effective in purifying SP-B and SP-C, had a lower recovery efficiency, and gave isolates with less surface activity. Mixtures of SPL plus SP-B eluted with solvents A and C adsorbed to equilibrium surface tensions of 21-22 mN/m and reached minimum surface tensions <1 mN/m during dynamic cycling. Mixtures of SPL with SP-C obtained with solvents A and C had equilibrium surface tensions of 26-27 mN/m and minimum dynamic values of 2-7 mN/m. The ability to obtain milligrams of virtually lipid-free SP-B and SP-C in a single column pass will facilitate research on their biological, structural, and biophysical properties.  相似文献   

5.
Pulmonary surfactant forms a monolayer of lipids and proteins at the alveolar air/liquid interface. Although cholesterol is a natural component of surfactant, its function in surface dynamics is unclear. To further elucidate the role of cholesterol in surfactant, we used a captive bubble surfactometer (CBS) to measure surface activity of spread films containing dipalmitoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylglycerol (DPPC/POPC/POPG, 50/30/20 molar percentages), surfactant protein B (SP-B, 0.75 mol %), and/or surfactant protein C (SP-C, 3 mol %) with up to 20 mol % cholesterol. A cholesterol concentration of 10 mol % was optimal for reaching and maintaining low surface tensions in SP-B-containing films but led to an increase in maximum surface tension in films containing SP-C. No effect of cholesterol on surface activity was found in films containing both SP-B and SP-C. Atomic force microscopy (AFM) was used, for the first time, to visualize the effect of cholesterol on topography of SP-B- and/or SP-C-containing films compressed to a surface tension of 22 mN/m. The protrusions found in the presence of cholesterol were homogeneously dispersed over the film, whereas in the absence of cholesterol the protrusions tended to be more clustered into network structures. A more homogeneous dispersion of surfactant lipid components may facilitate lipid insertion into the surfactant monolayer. Our data provide additional evidence that natural surfactant, containing SP-B and SP-C, is superior to surfactants lacking one of the components, and furthermore, this raises the possibility that the cholesterol found in surfactant of warm-blooded mammals does not have a function in surface activity.  相似文献   

6.
The effects of surfactant protein (SP)-A on the dynamic surface tension lowering and resistance to inhibition of dispersions of calf lung surfactant extract (CLSE) and mixtures of synthetic phospholipids combined with SP-B,C hydrophobic apoproteins were studied at 37 degrees C and rapid cycling rate (20 cycles/min). Addition of SP-A to CLSE, which already contains SP-B and -C, gave a slight improvement in the time course of surface tension lowering on an oscillating bubble apparatus in the absence of inhibitory protein molecules such as albumin or hemoglobin. However, when these proteins were present at concentrations of 10-50 mg/ml, SP-A substantially improved the resistance of CLSE to their inhibitory effects. The beneficial effect of SP-A required the presence of Ca2+ ions, and disappeared when EDTA was substituted for this divalent cation in the subphase. The effect was also retained when SP-A was heated to 50 degrees C prior to addition to CLSE, but was abolished by heating SP-A to 99 degrees C. Additional studies showed that similar improvements in resistance to inhibition were found when SP-A was added to synthetic mixtures of dipalmitoyl phosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (80:20 by weight) reconstituted with 1% SP-B or SP-B and -C, but not to phospholipid mixtures containing only SP-C. The requirements for SP-B and calcium for the beneficial effects of SP-A on surface activity suggest that the formation of ordered, larger phospholipid-apoprotein aggregates may be involved in the process. The finding that SP-A enhances the ability of CLSE and other surfactant mixtures containing SP-B to resist inhibition is an advantage that will need to be weighed against other factors such as increased antigenicity and heat sensitivity in therapeutic applications in surfactant replacement therapy.  相似文献   

7.
Pattle, who provided some of the initial direct evidence for the presence of pulmonary surfactant in the lung, was also the first to show surfactant was susceptible to proteases such as trypsin. Pattle concluded surfactant was a lipoprotein. Our group has investigated the roles of the surfactant proteins (SP-) SP-A, SP-B, and SP-C using a captive bubble tensiometer. These studies show that SP-C>SP-B>SP-A in enhancing surfactant lipid adsorption (film formation) to the equilibrium surface tension of approximately 22-25 mN/m from the 70 mN/m of saline at 37 degrees C. In addition to enhancing adsorption, surfactant proteins can stabilize surfactant films so that lateral compression induced through surface area reduction results in the lowering of surface tension (gamma) from approximately 25 mN/m (equilibrium) to values near 0 mN/m. These low tensions, which are required to stabilize alveoli during expiration, are thought to arise through exclusion of fluid phospholipids from the surface monolayer, resulting in an enrichment in the gel phase component dipalmitoylphosphatidylcholine (DPPC). The results are consistent with DPPC enrichment occurring through two mechanisms, selective DPPC adsorption and preferential squeeze-out of fluid components such as unsaturated phosphatidylcholine (PC) and phosphatidylglycerol (PG) from the monolayer. Evidence for selective DPPC adsorption arises from experiments showing that the surface area reductions required to achieve gamma near 0 mN/m with DPPC/PG samples containing SP-B or SP-A plus SP-B films were less than those predicted for a pure squeeze-out mechanism. Surface activity improves during quasi-static or dynamic compression-expansion cycles, indicating the squeeze-out mechanism also occurs. Although SP-C was not as effective as SP-B in promoting selective DPPC adsorption, this protein is more effective in promoting the reinsertion of lipids forced out of the surface monolayer following overcompression at low gamma values. Addition of SP-A to samples containing SP-B but not SP-C limits the increase in gamma(max) during expansion. It is concluded that the surfactant apoproteins possess distinct overlapping functions. SP-B is effective in selective DPPC insertion during monolayer formation and in PG squeeze-out during monolayer compression. SP-A can promote adsorption during film formation, particularly in the presence of SP-B. SP-C appears to have a superior role to SP-B in formation of the surfactant reservoir and in reinsertion of collapse phase lipids.  相似文献   

8.
Recent data suggest that a functional cooperation between surfactant proteins SP-B and SP-C may be required to sustain a proper compression-expansion dynamics in the presence of physiological proportions of cholesterol. SP-C is a dually palmitoylated polypeptide of 4.2 kDa, but the role of acylation in SP-C activity is not completely understood. In this work we have compared the behavior of native palmitoylated SP-C and recombinant nonpalmitoylated versions of SP-C produced in bacteria to get a detailed insight into the importance of the palmitic chains to optimize interfacial performance of cholesterol-containing surfactant films. We found that palmitoylation of SP-C is not essential for the protein to promote rapid interfacial adsorption of phospholipids to equilibrium surface tensions (∼22 mN/m), in the presence or absence of cholesterol. However, palmitoylation of SP-C is critical for cholesterol-containing films to reach surface tensions ≤1 mN/m at the highest compression rates assessed in a captive bubble surfactometer, in the presence of SP-B. Interestingly, the ability of SP-C to facilitate reinsertion of phospholipids during expansion was not impaired to the same extent in the absence of palmitoylation, suggesting the existence of palmitoylation-dependent and -independent functions of the protein. We conclude that palmitoylation is key for the functional cooperation of SP-C with SP-B that enables cholesterol-containing surfactant films to reach very low tensions under compression, which could be particularly important in the design of clinical surfactants destined to replacement therapies in pathologies such as acute respiratory distress syndrome.  相似文献   

9.
As birds have tubular lungs that do not contain alveoli, avian surfactant predominantly functions to maintain airflow in tubes rather than to prevent alveolar collapse. Consequently, we have evaluated structural, biochemical, and functional parameters of avian surfactant as a model for airway surfactant in the mammalian lung. Surfactant was isolated from duck, chicken, and pig lung lavage fluid by differential centrifugation. Electron microscopy revealed a uniform surfactant layer within the air capillaries of the bird lungs, and there was no tubular myelin in purified avian surfactants. Phosphatidylcholine molecular species of the various surfactants were measured by HPLC. Compared with pig surfactant, both bird surfactants were enriched in dipalmitoylphosphatidylcholine, the principle surface tension-lowering agent in surfactant, and depleted in palmitoylmyristoylphosphatidylcholine, the other disaturated phosphatidylcholine of mammalian surfactant. Surfactant protein (SP)-A was determined by immunoblot analysis, and SP-B and SP-C were determined by gel-filtration HPLC. Neither SP-A nor SP-C was detectable in either bird surfactant, but both preparations of surfactant contained SP-B. Surface tension function was determined using both the pulsating bubble surfactometer (PBS) and capillary surfactometer (CS). Under dynamic cycling conditions, where pig surfactant readily reached minimal surface tension values below 5 mN/m, neither avian surfactant reached values below 15 mN/m within 10 pulsations. However, maximal surface tension of avian surfactant was lower than that of porcine surfactant, and all surfactants were equally efficient in the CS. We conclude that a surfactant composed primarily of dipalmitoylphosphatidylcholine and SP-B is adequate to maintain patency of the air capillaries of the bird lung.  相似文献   

10.
Schram V  Hall SB 《Biophysical journal》2001,81(3):1536-1546
We determined the influence of the two hydrophobic proteins, SP-B and SP-C, on the thermodynamic barriers that limit adsorption of pulmonary surfactant to the air-water interface. We compared the temperature and concentration dependence of adsorption, measured by monitoring surface tension, between calf lung surfactant extract (CLSE) and the complete set of neutral and phospholipids (N&PL) without the proteins. Three stages generally characterized the various adsorption isotherms: an initial delay during which surface tension remained constant, a fall in surface tension at decreasing rates, and, for experiments that reached approximately 40 mN/m, a late acceleration of the fall in surface tension to approximately 25 mN/m. For the initial change in surface tension, the surfactant proteins accelerated adsorption for CLSE relative to N&PL by more than ten-fold, reducing the Gibbs free energy of transition (DeltaG(O)) from 119 to 112 kJ/mole. For the lipids alone in N&PL, the enthalpy of transition (DeltaH(O), 54 kJ/mole) and entropy (-T. DeltaS, 65 kJ/mole at 37 degrees C) made roughly equal contributions to DeltaG(O). The proteins in CLSE had little effect on -T. DeltaS(O) (68 kJ/mole), but lowered DeltaG(O) for CLSE by reducing DeltaH(O) (44 kJ/mole). Models of the detailed mechanisms by which the proteins facilitate adsorption must meet these thermodynamic constraints.  相似文献   

11.
The hydrophobic proteins SP-B and SP-C are essential for pulmonary surfactant function, even though they are a relatively minor component (<2% of surfactant dry mass). Despite countless studies, their specific differential action and their possible concerted role to optimize the surface properties of surfactant films have not been completely elucidated. Under conditions kept as physiologically relevant as possible, we tested the surface activity and mechanical stability of several surfactant films of varying protein composition in vitro using a captive bubble surfactometer and a novel (to our knowledge) stability test. We found that in the naturally derived surfactant lipid mixtures, surfactant protein SP-B promoted film formation and reextension to lower surface tensions than SP-C, and in particular played a vital role in sustaining film stability at the most compressed states, whereas SP-C produced no stabilization. Preparations containing both proteins together revealed a slight combined effect in enhancing film formation. These results provide a qualitative and quantitative framework for the development of future synthetic therapeutic surfactants, and illustrate the crucial need to include SP-B or an efficient SP-B analog for optimal function.  相似文献   

12.
SP-B and SP-C alter diffusion in bilayers of pulmonary surfactant   总被引:2,自引:0,他引:2       下载免费PDF全文
Schram V  Hall SB 《Biophysical journal》2004,86(6):3734-3743
The hydrophobic proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface by an unknown mechanism. We tested the hypothesis that these proteins accelerate adsorption by disrupting the structure of the lipid bilayer, either by a generalized increase in fluidity or by a focal induction of interfacial boundaries within the bilayer. We used fluorescence recovery after photobleaching to measure diffusion of nitrobenzoxadiazolyl-dimyristoyl-phosphatidylethanolamine between 11 and 54 degrees C in multilayers containing the complete set of lipids and proteins in calf lung surfactant extract (CLSE), or the complete set of neutral and phospholipids without the proteins. Above 35 degrees C, Arrhenius plots of diffusion were parallel for CLSE and neutral and phospholipids, but shifted to lower values for CLSE, suggesting that the proteins rigidify the lipid bilayer rather than producing the proposed increase in membrane fluidity. The slopes of the Arrhenius plots for CLSE were steeper below 35 degrees C, suggesting that the proteins induce phase separation at that temperature. The mobile fraction fell below 27 degrees C, consistent with a percolation threshold of coexisting gel and liquid-crystal phases. The induction of lateral phase separation in CLSE, however, does not correlate with apparent changes in adsorption kinetics at this temperature. Our results suggest that SP-B and SP-C accelerate adsorption through a mechanism other than the disruption of surfactant bilayers, possibly by stabilizing a high-energy, highly curved adsorption intermediate.  相似文献   

13.
Surfactant proteins B and C (SP-B and SP-C) are present in natural derived surfactant preparations used for treatment of respiratory distress syndrome. Herein the surface activity of an SP-C analogue (SP-C(LKS)), a hybrid peptide between SP-C and bacteriorhodopsin (SP-C/BR) and a model peptide (KL(4)) was studied with a captive bubble surfactometer (CBS). The peptides were mixed with either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/phosphatidylglycerol (PG) (7:3, by weight) or DPPC/PG/palmitic acid (68:22:9, by weight) at a concentration of 1 mg/ml in HEPES buffer, pH 6.9 and a polypeptide/lipid weight ratio of 0.02--0.03. In some lipid/peptide preparations also 2% of SP-B was included. Adsorption, monitored as surface tension vs. time for 10 min after bubble formation did not show discernible differences for the whole set of preparations. Equilibrium surface tensions of approximately 25 mN/m were reached after 5--10 min for all preparations, although those with SP-C/BR appeared not to reach end point of adsorption within 10 min. Area compression needed to reach minimum surface tension of 0.5--2.0 mN/m was least for the KL(4) preparation, about 13% in the first cycle. 3% SP-C(LKS) in DPPC:PG (7:3, by weight) reached minimum surface tension upon 27% compression in the first cycle. If DPPC:PG:PA (68:22:9, by weight) was used instead only 16% area compression was needed and 14% if also 2% SP-B was included. 3% SP-C(LKS) in DPPC:PG (7:3, by weight)+2% SP-B needed 34% compression to reach minimum surface tension. The replenishment of material from a surface associated surfactant reservoir was estimated with subphase depletion experiments. With the 2% KL(4) preparation incorporation of excess material took place at a surface tension of 25--35 mN/m during stepwise bubble expansion and excess material equivalent to 4.3 monolayers was found. When 2% SP-B was added to 3% SP-C(LKS) in DPPC:PG (7:3, by weight) the number of excess monolayers increased from 1.5 to 3.6 and the incorporation took place at 30--40 mN/m. When SP-B was added to 3% SP-C(LKS) in DPPC:PG:PA (68:22:9, by weight) the number of excess monolayers increased from 0.5 to 3.4 and incorporation took place at 40--50 mN/m. With 2% SP-C/BR incorporation took place at 40--45 mN/m, frequent instability clicks were observed and excess material of approximately 1.1 monolayer was estimated.  相似文献   

14.
This study examines the direct inhibitory effects of Pneumocystis carinii (Pc) organisms and chemical components on the surface activity and composition of whole calf lung surfactant (WLS) and calf lung surfactant extract (CLSE) in vitro. Incubation of WLS suspensions with intact Pc organisms (10(7) per milligram of surfactant phospholipid) did not significantly alter total phospholipid levels or surfactant protein A content. Incubation with intact Pc organisms also did not impair dynamic surface tension lowering in suspensions of WLS or centrifuged large surfactant aggregates on a bubble surfactometer (37 degrees C, 20 cycles/min, 0.5 and 2.5 mg phospholipid/ml). However, exposure of WLS or CLSE to disrupted (sonicated) Pc organisms led to severe detriments in activity, with minimum surface tensions of 17-19 mN/m vs. <1 mN/m for surfactants alone. Extracted hydrophobic chemical components from Pc (98.8% lipids, 0.1 mM) reduced the surface activity of WLS and CLSE similarly to sonicated Pc organisms, whereas extracted hydrophilic chemical components from Pc (primarily proteins) had only minor effects on surface tension lowering. These results indicate that in addition to surfactant dysfunction induced by inflammatory lung injury and edema-derived inhibitors in Pc pneumonia, disrupted Pc organisms in the alveolar lumen also have the potential to directly inhibit endogenous and exogenous lung surfactants in affected patients.  相似文献   

15.
Spread binary monolayers of surfactant-associated proteins SP-B and SP-C were formed at the air-water interface. Surface pressure measurements showed no interactions between the hydrophobic proteins. The effects of a mixture of SP-B plus SP-C (2:1, w/w) on the properties of monolayers of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and DPPC:DPPG (7:3, mol:mol) were studied. During compression of ternary and quaternary films, containing less than 0.4 mol% or 5 weight% total protein, the proteins were not squeezed out and appeared to remain associated with the film until collapse at surface pressures of about 65-70 mN.m-1. At initial concentrations of total protein of about 0.9 mol% or 10 weight%, exclusion of protein-lipid complexes was observed at 40-50 mN.m-1. Larger amounts of phospholipid were removed by proteins from (SP-B:SP-C)/DPPG films than from (SP-B:SP-C)/DPPC ones. Separate squeeze-out of SP-B (or SP-B plus DPPC) at about 40 mN.m-1, followed by exclusion of SP-C (or SP-C plus DPPC) at about 50 mN.m-1, was observed in (SP-B:SP-C)/DPPC films. This led to a conclusion that there was independent behavior of SP-B and SP-C in (SP-B:SP-C)/DPPC monolayers. The quaternary (SP-B:SP-C)/(DPPC:DPPG) films showed qualitatively similar process of squeeze-out of the proteins. In the ternary mixtures of SP-B plus SP-C with DPPG separate exclusion of SP-B was not detected; rather, the data was consistent with exclusion of a (SP-B:SP-C)/DPPG complex at about 50 mN.m-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study focuses on the structural organization of surfactant protein B (SP-B) containing lipid monolayers. The artificial system is composed of the saturated phospholipids dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) in a molar ratio of 4:1 with 0.2 mol% SP-B. The different "squeeze-out" structures of SP-B were visualized by scanning probe microscopy and compared with structures formed by SP-C. Particularly, the morphology and material properties of mixed monolayers containing 0.2 mol% SP-B in a wide pressure range of 10 to 54 mN/m were investigated revealing that filamentous domain boundaries occur at intermediate surface pressure (15-30 mN/m), while disc-like protrusions prevail at elevated pressure (50-54 mN/m). In contrast, SP-C containing lipid monolayers exhibit large flat protrusions composed of stacked bilayers in the plateau region (app. 52 mN/m) of the pressure-area isotherm. By using different scanning probe techniques (lateral force microscopy, force modulation, phase imaging) it was shown that SP-B is dissolved in the liquid expanded rather than in the liquid condensed phase of the monolayer. Although artificial, the investigation of this system contributes to further understanding of the function of lung surfactant in the alveolus.  相似文献   

17.
Taneva SG  Keough KM 《Biochemistry》2000,39(20):6083-6093
Surface balance techniques were used to study the interactions of surfactant protein SP-A with monolayers of surfactant components preformed at the air-water interface. SP-A adsorption into the monolayers was followed by monitoring the increase in the surface pressure Deltapi after injection of SP-A beneath the films. Monolayers of dipalmitoylphosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (8:2, mol/mol) spread at initial surface pressure pi(i) = 5 mN/m did not promote the adsorption of SP-A at a subphase concentration of 0.68 microg/mL as compared to its adsorption to the monolayer-free surface. Surfactant proteins, SP-B or SP-C, when present in the films of DPPC:PG spread at pi(i) = 5 mN/m, enhanced the incorporation of SP-A in the monolayers to a similar extent; the Deltapi values being dependent on the levels of SP-B or SP-C, 3-17 wt %, in the lipid films. Calcium in the subphase did not affect the intrinsic surface activity of SP-A but reduced the Deltapi values produced by the adsorption of the protein to all the preformed films independently of their compositions and charges. The divalent ions likely modified the interaction of SP-A with the monolayers through their effects on the conformation, self-association, and charge state of SP-A. Values of Deltapi produced by adsorption of SP-A to the films of DPPC:PG with or without SP-B or SP-C were a function of the initial surface pressure of the films, pi(i). In the range of pressures 5 相似文献   

18.
Modified natural surfactant preparations, used for treatment of respiratory distress syndrome in premature infants, contain phospholipids and the hydrophobic surfactant protein (SP)-B and SP-C. Herein, the individual and combined effects of SP-B and SP-C were evaluated in premature rabbit fetuses treated with airway instillation of surfactant and ventilated without positive end-expiratory pressure. Artificial surfactant preparations composed of synthetic phospholipids mixed with either 2% (wt/wt) of porcine SP-B, SP-C, or a synthetic poly-Leu analog of SP-C (SP-C33) did not stabilize the alveoli at the end of expiration, as measured by low lung gas volumes of approximately 5 ml/kg after 30 min of ventilation. However, treatment with phospholipids containing both SP-B and SP-C/SP-C33 approximately doubled lung gas volumes. Doubling the SP-C33 content did not affect lung gas volumes. The tidal volumes were similar in all groups receiving surfactant. This shows that SP-B and SP-C exert different physiological effects, since both proteins are needed to establish alveolar stability at end expiration in this animal model of respiratory distress syndrome, and that an optimal synthetic surfactant probably requires the presence of mimics of both SP-B and SP-C.  相似文献   

19.
Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome.  相似文献   

20.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号