首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In yeast mitochondria, RNA degradation takes place through the coordinated activities of ySuv3 helicase and yDss1 exoribonuclease (mtEXO), whereas in bacteria, RNA is degraded via RNaseE, RhlB, PNPase, and enolase. Yeast lacking the Suv3 component of the mtEXO form petits and undergo a toxic accumulation of omega intron RNAs. Mammalian mitochondria resemble their prokaryotic origins by harboring a polyadenylation-dependent RNA degradation mechanism, but whether SUV3 participates in regulating RNA turnover in mammalian mitochondria is unclear. We found that lack of hSUV3 in mammalian cells subsequently yielded an accumulation of shortened polyadenylated mtRNA species and impaired mitochondrial protein synthesis. This suggests that SUV3 may serve in part as a component of an RNA degradosome, resembling its yeast ancestor. Reduction in the expression levels of oxidative phosphorylation components correlated with an increase in reactive oxygen species generation, whereas membrane potential and ATP production were decreased. These cumulative defects led to pleiotropic effects in mitochondria such as decreased mtDNA copy number and a shift in mitochondrial morphology from tubular to granular, which eventually manifests in cellular senescence or cell death. Thus, our results suggest that SUV3 is essential for maintaining proper mitochondrial function, likely through a conserved role in mitochondrial RNA regulation.  相似文献   

3.
4.
5.
6.
RNAs that function in mitochondria are typically encoded by the mitochondrial DNA. However, the mitochondrial tRNAs of Trypanosoma brucei are encoded by the nuclear DNA and therefore must be imported into the mitochondrion. It is becoming evident that RNA import into mitochondria is phylogenetically widespread and is essential for cellular processes, but virtually nothing is known about the mechanism of RNA import. We have identified and characterized mitochondrial precursor tRNAs in T. brucei. The identification of mitochondrially located precursor tRNAs clearly indicates that mitochondrial tRNAs are imported as precursors. The mitochondrial precursor tRNAs hybridize to cloned nuclear tRNA genes, label with [alpha-32P]CTP using yeast tRNA nucleotidyltransferase and in isolated mitochondria via an endogenous nucleotidyltransferase-like activity, and are processed to mature tRNAs by Escherichia coli and yeast mitochondrial RNase P. We show that T. brucei mitochondrial extract contains an RNase P activity capable of processing a prokaryotic tRNA precursor as well as the T. brucei tRNA precursors. Precursors for tRNA(Asn) and tRNA(Leu) were detected on Northern blots of mitochondrial RNA, and the 5' ends of these RNAs were characterized by primer extension analysis. The structure of the precursor tRNAs and the significance of nuclear encoded precursor tRNAs within the mitochondrion are discussed.  相似文献   

7.
8.
In human cell, a subset of small non-coding RNAs is imported into mitochondria from the cytosol. Analysis of the tRNA import pathway allowing targeting of the yeast tRNALys CUU into human mitochondria demonstrates a similarity between the RNA import mechanisms in yeast and human cells. We show that the cytosolic precursor of human mitochondrial lysyl-tRNA synthetase (preKARS2) interacts with the yeast tRNALys CUU and small artificial RNAs which contain the structural elements determining the tRNA mitochondrial import, and facilitates their internalization by isolated human mitochondria. The tRNA import efficiency increased upon addition of the glycolytic enzyme enolase, previously found to be an actor of the yeast RNA import machinery. Finally, the role of preKARS2 in the RNA mitochondrial import has been directly demonstrated in vivo, in cultured human cells transfected with the yeast tRNA and artificial importable RNA molecules, in combination with preKARS2 overexpression or downregulation by RNA interference. These findings suggest that the requirement of protein factors for the RNA mitochondrial targeting might be a conserved feature of the RNA import pathway in different organisms.  相似文献   

9.
Mitochondria play a key role in essential cellular functions. A deeper understanding of mitochondrial molecular processes is hampered by the difficulty of incorporating foreign nucleic acids into organelles. Mitochondria of most eukaryotic species import cytosolic tRNAs. Based on this natural process, we describe here a powerful shuttle system to internalize several types of RNAs into isolated mitochondria. We demonstrate that this tool is useful to investigate tRNA processing or mRNA editing in plant mitochondria. Furthermore, we show that the same strategy can be used to address both tRNA and mRNA to isolated mammalian mitochondria. We anticipate our novel approach to be the starting point for various studies on mitochondrial processes. Finally, our study provides new insights into the mechanism of RNA import into mitochondria.  相似文献   

10.
11.
12.
13.
Mitochondrial gene expression in trypanosomes is controlled primarily at the levels of RNA processing and RNA stability. This regulation undoubtedly involves numerous ribonucleases. Here we characterize the Trypanosoma brucei homolog of the yeast DSS-1 mitochondrial exoribonuclease, which we term TbDSS-1. Biochemical fractionation indicates that TbDSS-1 is mitochondrially localized, as predicted by its N-terminal sequence. In contrast to its yeast homolog, TbDSS-1 does not appear to be associated with mitochondrial ribosomes. Targeted downregulation of TbDSS-1 by RNA interference in procyclic-form T. brucei results in a severe growth defect. In addition, TbDSS-1 depletion leads to a decrease in the levels of never edited cytochrome oxidase subunit I (COI) mRNA and both unedited and edited COIII mRNAs, indicating this enzyme functions in the control of mitochondrial RNA abundance. We also observe a considerable reduction in the level of edited apocytochrome b (CYb) mRNA and a corresponding increase in unedited CYb mRNA, suggesting that TbDSS-1 functions, either directly or indirectly, in the control of RNA editing. The abundance of both gCYb[560] and gA6[149] guide RNAs is reduced upon TbDSS-1 depletion, although the reduction in gCYb[560] is much more dramatic. The significant reduction in gCYb levels could potentially account for the observed decrease in CYb RNA editing. Western blot analyses of mitochondrial RNA editing and stability factors indicate that the perturbations of RNA levels observed in TbDSS-1 knock-downs do not result from secondary effects on other mitochondrial proteins. In all, these data demonstrate that TbDSS-1 is an essential protein that plays a role in mitochondrial RNA stability and RNA editing.  相似文献   

14.
RNA-mediated gene duplication has been proposed to create processed paralogs in the plant mitochondrial genome. A processed paralog may retain signatures left by the maturation process of its RNA precursor, such as intron removal and no need of RNA editing. Whereas it is well documented that an RNA intermediary is involved in the transfer of mitochondrial genes to the nucleus, no direct evidence exists for insertion of processed paralogs in the mitochondria (i.e., processed and un-processed genes have never been found simultaneously in the mitochondrial genome). In this study, we sequenced a region of the mitochondrial gene nad1, and identified a number of taxa were two different copies of the region co-occur in the mitochondria. The two nad1 paralogs differed in their (a) presence or absence of a group II intron, and (b) number of edited sites. Thus, this work provides the first evidence of co-existence of processed paralogs and their precursors within the plant mitochondrial genome. In addition, mapping the presence/absence of the paralogs provides indirect evidence of RNA-mediated gene duplication as an essential process shaping the mitochondrial genome in plants.  相似文献   

15.
16.
Group II introns are large catalytic RNAs that are found in bacteria and organellar genomes of lower eukaryotes, but are particularly prevalent within mitochondria in plants, where they are present in many critical genes. The excision of plant mitochondrial introns is essential for respiratory functions, and is facilitated in vivo by various protein cofactors. Typical group II introns are classified as mobile genetic elements, consisting of the self‐splicing ribozyme and its own intron‐encoded maturase protein. A hallmark of maturases is that they are intron‐specific, acting as cofactors that bind their intron‐containing pre‐RNAs to facilitate splicing. However, the degeneracy of the mitochondrial introns in plants and the absence of cognate intron‐encoded maturase open reading frames suggest that their splicing in vivo is assisted by ‘trans’‐acting protein factors. Interestingly, angiosperms harbor several nuclear‐encoded maturase‐related (nMat) genes that contain N‐terminal mitochondrial localization signals. Recently, we established the roles of two of these paralogs in Arabidopsis, nMAT1 and nMAT2, in the splicing of mitochondrial introns. Here we show that nMAT4 (At1g74350) is required for RNA processing and maturation of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria. Seed germination, seedling establishment and development are strongly affected in homozygous nmat4 mutants, which also show modified respiration phenotypes that are tightly associated with complex I defects.  相似文献   

17.
18.
19.
20.
The major and modified base composition of mitochondrial 4 S RNA from rat liver and from Morris hepatomas 5123D and 7777 has been determined for 16 constituents using a chemical tritium-derivative method. The base composition of these mitochondrial 4 S RNA preparations was compared with the base composition of cytoplasmic and bacterial (Escherichia coli B and Bacillus subtilis) 4-S RNAs. The results of these studies are: 1. When compared with cytoplasmic 4 S RNA, the liver and hepatoma mitochondrial 4-S RNAs are characterized by high (A + U)/(G + C) ratios and low overall degrees of base methylation and modification. 2. The mammalian mitochondrial 4-S RNAs are qualitatively even more different from the bacterial 4-S RNAs than from their cytoplasmic counterparts. Thus, several modified constituents found in both cytoplasmic and mitochondrial 4 S RNA are absent from the bacterial 4-S RNAs. 3. Mitochondrial 4S RNA from both hepatomas was found to be under-methylated and undermodified when compared with normal liver mitochondrial 4S RNA. This trend is more pronounced for the rapidly growing hepatoma 7777 (i.e., 17% undermethylation) than for the more slowly growing hepatoma 5123D (i.e., 8% undermethylation). These findings are discussed in relationship to (1) results of other authors on composition of mitochondrial 4 S RNA, (2) special features of structure and biosynthesis of mitochondrial 4 S RNA, (3) the possible evolutionary origin of mitochondria and (4) the possible role played by aberrant mitochondrial 4 S RNA in altered mitochondrial protein synthesis in tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号