共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined whether older adults differ from younger adults in the degree to which they favor immediate over delayed rewards during decision-making. To examine the neural correlates of age-related differences in delay discounting we acquired functional MR images while participants made decisions between smaller but sooner and larger but later monetary rewards. The behavioral results show age-related reductions in delay discounting. Less impulsive decision-making in older adults was associated with lower ventral striatal activations to immediate reward. Furthermore, older adults showed an overall higher percentage of delayed choices and reduced activity in the dorsal striatum than younger adults. This points to a reduced reward sensitivity of the dorsal striatum in older adults. Taken together, our findings indicate that less impulsive decision-making in older adults is due to a reduced sensitivity of striatal areas to reward. These age-related changes in reward sensitivity may result from transformations in dopaminergic neuromodulation with age. 相似文献
2.
Regular aerobic exercise strongly influences muscle metabolism in elderly and young; however, the acute effects of aerobic exercise on protein metabolism are not fully understood. We investigated the effect of a single bout of moderate walking (45 min at approximately 40% of peak O2 consumption) on postexercise (POST-EX) muscle metabolism and synthesis of plasma proteins [albumin (ALB) and fibrinogen (FIB)] in untrained older (n = 6) and younger (n = 6) men. We measured muscle phenylalanine (Phe) kinetics before (REST) and POST-EX (10, 60, and 180 min) using l-[ring-2H5]phenylalanine infusion, femoral arteriovenous blood samples, and muscle biopsies. All data are presented as the difference from REST (at 10, 60, and 180 min POST-EX). Mixed muscle fractional synthesis rate (FSR) increased significantly at 10 min POST-EX in both the younger (0.0363%/h) and older men (0.0830%/h), with the younger men staying elevated through 60 min POST-EX (0.0253%/h). ALB FSR increased at 10 min POST-EX in the younger men only (2.30%/day), whereas FIB FSR was elevated in both groups through 180 min POST-EX (younger men = 4.149, older men = 4.107%/day). Muscle protein turnover was also increased, with increases in synthesis and breakdown in younger and older men. Phe rate of disappearance (synthesis) was increased in both groups at 10 min POST-EX and remained elevated through 60 min POST-EX in the older men. A bout of moderate-intensity aerobic exercise induces short-term increases in muscle and plasma protein synthesis in both younger and older men. Aging per se does not diminish the protein metabolic capacity of the elderly to respond to acute aerobic exercise. 相似文献
5.
Intracellular degradation of exogenous (serum) proteins provides a source of amino acids for cellular protein synthesis. Pinocytosis serves as the mechanism for delivering exogenous protein to the lysosomes, the major site of intracellular degradation of exogenous protein. To determine whether the availability of extracellular free amino acids altered pinocytic function, we incubated monolayers of pulmonary alveolar macrophages with the fluid-phase marker, [14C]sucrose, and we dissected the pinocytic process by kinetic analysis. Additionally, intracellular degradation of endogenous and exogenous protein was monitored by measuring phenylalanine released from the cell monolayers in the presence of cycloheximide. Results revealed that in response to a subphysiological level of essential amino acids or to amino acid deprivation, (a) the rate of fluid-phase pinocytosis increased in such a manner as to preferentially increase both delivery to and size of an intracellular compartment believed to be the lysosomes, (b) the degradation of exogenously supplied albumin increased, and (c) the fraction of phenylalanine derived from degradation of exogenous albumin and reutilized for de novo protein synthesis increased. Thus, modulation of the pinosome-lysosome pathway may represent a homeostatic mechanism sensitive to the availability of extracellular free amino acids. 相似文献
6.
ObjectiveInvestigate the influence of apprehensive gait on activation and cocontraction of lower limb muscles of younger and older female adults. MethodsData of 17 younger (21.47 ± 2.06 yr) and 18 older women (65.33 ± 3.14 yr) were considered for this study. Participants walked on the treadmill at two different conditions: normal gait and apprehensive gait. The surface electromyographic signals (EMG) were recorded during both conditions on: rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), gastrocnemius lateralis (GL), and soleus (SO). ResultsApprehensive gait promoted greater activation of thigh muscles than normal gait ( F = 5.34 and p = 0.007, for significant main effect of condition; RF, p = 0.002; VM, p < 0.001; VL, p = 0.003; and BF, p = 0.001). Older adults had greater cocontraction of knee and ankle stabilizer muscles than younger women ( F = 4.05 and p = 0.019, for significant main effect of groups; VM/BF, p = 0.010; TA/GL, p = 0.007; and TA/SO, p = 0.002). ConclusionApprehensive gait promoted greater activation of thigh muscles and older adults had greater cocontraction of knee and ankle stabilizer muscles. Thus, apprehensive gait may leads to increased percentage of neuromuscular capacity, which is associated with greater cocontraction and contribute to the onset of fatigue and increased risk of falling in older people. 相似文献
7.
Cardiovascular-related mortality increases in the cold winter months, particularly in older adults. Previously, we reported that determinants of myocardial O(2) demand, such as the rate-pressure product, increase more in older adults compared with young adults during cold stress. The aim of the present study was to determine if aging influences the coronary hemodynamic response to cold stress in humans. Transthoracic Doppler echocardiography was used to noninvasively measure peak coronary blood velocity in the left anterior descending artery before and during acute (20 min) whole body cold stress in 10 young adults (25 ± 1 yr) and 11 older healthy adults (65 ± 2 yr). Coronary vascular resistance (diastolic blood pressure/peak coronary blood velocity), coronary perfusion time fraction (coronary perfusion time/R-R interval), and left ventricular wall stress were calculated. We found that cooling (via a water-perfused suit) increased left ventricular wall stress, a primary determinant of myocardial O(2) consumption, in both young and older adults, although the magnitude of this increase was nearly twofold greater in older adults (change of 9.1 ± 3.5% vs. 17.6 ± 3.2%, P < 0.05, change from baseline in young and older adults and young vs. older adults). Despite the increased myocardial O(2) demand during cooling, coronary vasodilation (decreased coronary vascular resistance) occurred only in young adults (3.22 ± 0.23 to 2.85 ± 0.18 mmHg·cm(-1)·s(-1), P < 0.05) and not older adults (3.97 ± 0.24 to 3.79 ± 0.27 mmHg·cm(-1)·s(-1), P > 0.05). Consistent with a blunted coronary vascular response, absolute coronary perfusion time tended to decrease (P = 0.13) and coronary perfusion time fraction decreased (P < 0.05) during cooling in older adults but not young adults. Collectively, these data suggest that older adults demonstrate an altered coronary hemodynamic response to acute cold stress. 相似文献
9.
1. The amino acid composition of total proteins in six stages of the life cycle of Schistosoma mansoni was determined by routine autoanalysis of acid hydrolysates. Aspartate, glutamate and glycine were consistently the most abundant protein amino acids in all stages. 2. Incorporation of each of the protein amino acids into adult and egg proteins was determined using 72 hr cultures in complex media. Incorporation rates varied widely and there was no correlation between abundance in protein and the rate of incorporation. 3. Only five amino acids were interconverted to other amino acids which were themselves incorporated into worm and egg proteins (ala, arg, asp, gly, ser); of these only two (glu from ala and pro from arg) appeared to be of quantitative significance. Exogenous glucose yielded only three protein amino acids (ala, asp, glu). 4. The data are considered in the light of differences in egg and adult protein synthesis and with particular regard to potential chemotherapy at this level. 相似文献
10.
To facilitate stable walking, humans must generate appropriate motor patterns and effective corrective responses to perturbations. Yet most EMG analyses do not address the continuous nature of muscle activation dynamics over multiple strides. We compared muscle activation dynamics in young and older adults by defining a multivariate state space for muscle activity. Eighteen healthy older and 17 younger adults walked on a treadmill for 2 trials of 5 min each at each of 5 controlled speeds (80–120% of preferred). EMG linear envelopes of v. lateralis, b. femoris, gastrocnemius, and t. anterior of the left leg were obtained. Interstride variability, local dynamic stability (divergence exponents), and orbital stability (maximum Floquet multipliers; FM) were calculated. Both age groups exhibited similar preferred walking speeds ( p=0.86). Amplitudes and variability of individual EMG linear envelopes increased with speed ( p<0.01) in all muscles but gastrocnemius. Older adults also exhibited greater variability in b. femoris and t. anterior ( p<0.004). When comparing continuous multivariate EMG dynamics, older adults demonstrated greater local and orbital instability of their EMG patterns ( p<0.01). We also compared how muscle activation dynamics were manifested in kinematics. Local divergence exponents were strongly correlated between kinematics and EMG, independent of age and walking speed, while variability and max FM were not. These changes in EMG dynamics may be related to increased neuromotor noise associated with aging and may indicate subtle deterioration of gait function that could lead to future functional declines. 相似文献
11.
The present study was performed to test the hypothesis that orally administered essential amino acids, in combination with carbohydrate, will stimulate net muscle protein synthesis in resting human muscle in vivo. Four volunteers ingested 500 mL of a solution containing 13.4 g of essential amino acids and 35 g sucrose (EAA). Blood samples were taken from femoral arterial and venous catheters over a 2-hour period following the ingestion of EAA to measure arteriovenous concentrations of amino acids across the muscle. Two muscle biopsies were taken during the study, one before administration of the drink and one approximately 2 hours after consumption of EAA. Serum insulin increased from normal physiologic levels at baseline (9.2 +/- 0.8 microU/mL) and peaked (48 +/- 7.1 microU/mL) 30 minutes after EAA ingestion. Arterial essential amino acid concentrations increased approximately 100 to 400% above basal levels between 10 and 30 minutes following drink ingestion. Net nitrogen (N) balance changed from negative (-495 +/- 128 nmol/mL) prior to consumption of EAA to a peak positive value (416 +/- 140 nmol/mL) within 10 minutes of ingestion of the drink. EAA resulted in an estimated positive net N uptake of 307.3 mg N above basal levels over the 2-hour period. Muscle amino acid concentrations were similar prior to and 2 hours following ingestion of EAA. We conclude that ingestion of a solution composed of carbohydrates to stimulate insulin release and a small amount of essential amino acids to increase amino acid availability for protein synthesis is an effective stimulator of muscle protein anabolism. 相似文献
12.
1. 1.Total protein, GOT, GPT, alkaline phosphatase and total free amino acid content in the brain, liver and kidney were studied in the hibernating, arousing and normothermic cobra (Naja haje). 2. 2.Tissues showed a decline in protein content which started in the prehibernating animals. At the low body temperatures in hibernation both synthesis and degradation would be reduced. The fall in protein content suggests synthesis is reduced more steeply than is degradation. Recovery of protein biosynthesis was demonstrated during arousal. 3. 3.In aroused animals, the levels of free amino acids in the tissues examined were higher than in hibernating ones or in normothermic controls studied in summer. 4. 4.A decline in GOT activity was recorded in the hibernating animals. The enzyme activity showed recovery on arousal. A similar trend was observed for the GPT activity in brain and kidney. 5. 5.The activity of alkaline phosphatase was also examined in the different tissues. The correlation of these changes to the different phases of hibernating cycle is discussed.
Author Keywords: Enzymes; hibernation; reptile; snake; Naja haje; protein metabolism 相似文献
14.
Amino acids regulate protein synthesis and breakdown (i.e., protein turnover) and consequently protein deposition, which corresponds to the balance between the two processes. Elucidating the mechanisms involved in such regulation is important from fundamental and applied points of view since it can provide a basis to optimize amino acid requirements and to control protein mass, body composition and so forth. Amino acids, which have long been considered simply as precursors of protein synthesis, are now recognized to exert other significant influences; that is, they are precursors of essential molecules, act as mediators or signal molecules and affect numerous functions. For example, amino acids act as mediators of metabolic pathways in the same manner as certain hormones. Thus, they modulate the activity of intracellular protein kinases involved in the regulation of metabolic pathways such as mRNA translation. We provide here an overview of the roles of amino acids as regulators of protein metabolism, by focusing particularly on sulfur amino acids. The potential importance of methionine as a "nutrient signal" is discussed in the light of recent findings. Emphasis is also placed on mechanisms controlling oxidative status since sulfur amino acids are involved in the synthesis of intracellular antioxidants (glutathione, taurine etc.) and in the methionine sulfoxide reductase antioxidant system. 相似文献
15.
We sought to determine whether exercise-induced muscle protein turnover alters the subsequent production of hepatically derived acute-phase plasma proteins, and whether age affects how these proteins are regulated. We measured arteriovenous (a-v) balance and the synthesis of mixed muscle protein, albumin (A) and fibrinogen (F) before exercise (REST) and from the beginning of exercise to 10, 60, and 180 min following a single bout of moderate-intensity leg extension exercise (POST-EX) in postabsorptive untrained older (n = 6) and younger (n = 6) men using L-[ring-2H5]phenylalanine (Phe). Subjects performed 6 sets of 8 repetitions of leg extension at 80% of their 1-RM (one-repetition maximum). All data are presented as the difference from REST (Delta from REST at 10, 60, and 180 min POST-EX). Mixed muscle fractional synthesis rate (FSR-M) increased significantly from the beginning of exercise until 10 min POST-EX in the older men (DeltaFSR-M: 0.044%/h), whereas FSR-M in the younger men was not elevated until 180 min POST-EX (DeltaFSR-M: 0.030%/h). FSR-A and FSR-F increased at all POST-EX periods in the older men (DeltaFSR-A = 10 min: 1.90%/day; 60 min: 2.72%/day; 180 min: 2.78%/day; DeltaFSR-F = 10 min: 1.00%/day; 60 min: 3.01%/day; 180 min: 3.73%/day). No change occurred in FSR-A in the younger men, but FSR-F was elevated from the beginning of exercise until 10 and 180 min POST-EX (10 min: 3.07%/day and 180 min: 3.96%/day). Net balance of Phe was positive in the older men in the immediate POST-EX period. Our data indicate that mixed muscle and hepatic derived protein synthesis is differentially regulated in younger and older men in response to a single bout of moderate-intensity leg extension exercise. Moreover, our data suggest that with age may come a greater need to salvage or make available amino acids from exercise-induced muscle protein breakdown to mount an acute-phase response. 相似文献
16.
The effect of tryptophan on the biosynthesis of proline has been investigated. Cells of Daucus carota grown in B5 medium supplemented with 5×10 –4M tryptophan acquired the ability to grow in the presence of inhibitory concentrations of azetidine-2-carboxylic acid, an analog of proline. When trp was added to carrot cell cultures at sub-growth inhibiting concentrations, overproduction of intracellular free proline was observed. An increase was also observed for lys, his, ala, leu and phe. Likewise, the addition of asparagine, glutamic acid and phenylalanine to the medium stimulated the intracellular increase of free proline and other amino acids.Abbreviations A2CA
azetidine-2-carboxylic acid
- 2,4-D
2,4-dichlorophenoxyacetic acid
- 5MT
5-methyltryptophan
- P5C
pyrroline-5-carboxylic acid
- f.wt.
fresh weight
- d.wt.
dry weight 相似文献
17.
Measurements of cardiac performance for humans at various ages is influenced by the variable examined, the population and techniques employed, and the factors that co-vary with age, including the presence of disease and physical conditioning. Interstudy differences in the extent to which occult coronary disease is present in older subjects and in the level of physical conditioning among subjects may underlie the variable perspectives contained in the literature of how aging affects cardiovascular function. In carefully screened, highly motivated but not athletically trained community-dwelling subjects, resting cardiovascular parameters are not age related except for systolic blood pressure, which increases with age. During vigorous exercise the mechanisms used to achieve a high level of cardiac output shift from a dependence on a catecholamine-mediated increase in heart rate and inotropy to a dependence on the Frank Starling mechanism. One reason for the age difference in cardiovascular response to exercise may be a diminished responsiveness to beta-adrenergic stimulation in these subjects. In other elderly subjects who cannot exercise to high work loads, a decline in stroke volume as well as heart rate at peak exercise has been observed. Whether the inability of these individuals to augment stroke volume is caused by a decrease in the ability of the heart to increase diastolic filling, by a decrease in systolic pump function caused by an increased afterload, by intrinsic myocardial contractile defects, or by a greater diminution of the cardiovascular response to beta-adrenergic stimuli is presently unknown. 相似文献
19.
The effect of a normal (n = 8) and high (n = 6) protein intake (1 and 2.5 g x kg(-1) x day(-1), respectively) and of exercise on plasma amino acid (AA) concentrations, insulin, and glucagon concentrations was followed throughout a continuous 24-h period in adult male subjects at energy balance after six days on a standardized diet and exercise program. Subjects were fasting from 2100 on day 6 to 1200 on day 7 and then fed 10 identical meals hourly until 2100. Physical exercise was performed (46% maximal oxygen uptake) between 0830 and 1000 (fasting) and in a fed state (1600-1730) on each day. The normal-protein group showed fasting plasma AA concentrations that were higher (P < 0.05) than those for the high-protein group, except for leucine, methionine, and tyrosine. Glutamine, glycine, alanine, taurine, and threonine concentrations were distinctly higher ( approximately 30% or greater) throughout the 24-h period in subjects consuming the normal- vs. the high-protein diets. Exercise appeared to increase, although not profoundly, the plasma concentrations of amino acids except for glutamate, histidine, ornithine, and tryptophan. The profound diet-related differences in plasma AA concentrations are only partially explained by differences in the renal clearance of the amino acids. We speculate on the possible metabolic basis for these findings. 相似文献
|