首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
Mycoplasma pneumoniae is an important causative agent of atypical pneumonia. This study was to determine the ability of a DNA expression vector, which encodes the carboxy terminal region of the M. pneumoniae P1 protein (P1C), to induce humoral and cellular immune responses and to protect against M. pneumoniae infection in BALB/c mice. Mice were immunized with pcDNA3.1/P1C by either intramuscular injection (i.m.) or intranasal inoculation (i.n.). Our results showed that p1c DNA immunization generates detectable antibodies specific to M. pneumoniae, and elicits high levels of IgG1, IgG2a, and IgG2b isotypes (P?< 0.01). The levels of IFN-γ and IL-4 in spleen cells of the immunized mice were significantly elevated by immunization via both the i.m. and i.n. methods. Moreover, p1c DNA-immunized mice exhibited detectable protection against M. pneumoniae infection. The lung tissue inflammation was relieved and the histopathologic score (HPS) of pcDNA3.1/P1C-immunized mice was significantly decreased than those in phosphate-buffed saline (PBS) or vaccine-vector-immunized mice (P?< 0.01), whereas there were no significant differences in HPS between i.m. and i.n. vaccination (P?> 0.05). Our results suggest that pcDNA3.1/P1C could be useful for developing a vaccine against M. pneumoniae infection.  相似文献   

2.
Streptococcus pneumoniae is a major public health problem and new strategies for the development of cost-effective alternative vaccines are important. The use of protein antigens such as PspA (pneumococcal surface protein A) is a promising approach to increase coverage at reduced costs. We have previously described the induction of a strong antibody response by a DNA vaccine expressing a C-terminal fragment of PspA. Fusion of this fragment with the cytoplasmic variant of SV40 large T-antigen (CT-Ag) caused reduction in specific interferon-gamma produced by stimulated spleen cells. In this work we show that the DNA vaccine expressing the C-terminal region of PspA elicits significant protection in mice against intraperitoneal challenge with a virulent strain of S. pneumoniae. Furthermore, fusion with CT-Ag completely abrogated the protection elicited by DNA immunization with this fragment. In this case, protection did not correlate with total anti-PspA antibody production nor with total IgG2a levels. The anti-PspA sera obtained from both constructs showed equivalent opsonic activity of pneumococci, indicating that the antibodies produced were functional. We could, though, observe a correlation between a lower IgG1:IgG2a ratio, which is indicative of a stronger bias towards Th1 responses, and protection. We also show that a vector expressing the most variable N-terminal alpha-helical region induces higher antibody formation, with increased protection of mice against intraperitoneal challenge with a more virulent strain of S. pneumoniae. As a whole, these results indicate that antibodies elicited against PspA would not be solely responsible for the protection induced by DNA vaccination and that cell-mediated immune responses could also be involved in protection against pneumococcal sepsis.  相似文献   

3.
Enterotoxigenic Escherichia coli is one of the leading causes of diarrhea in developing countries, and the disease may be fatal in the absence of treatment. Enterotoxigenic E. coli heat-labile toxin B subunit (LTB) can be used as an adjuvant, as a carrier of fused antigens, or as an antigen itself. The synthetic LTB (sLTB) gene, optimized for plant codon usage, has been introduced into rice cells by particle bombardment-mediated transformation. The integration and expression of the sLTB gene were observed via genomic DNA PCR and western blot analysis, respectively. The binding activity of LTB protein expressed in transgenic rice callus to GM1-ganglioside, a receptor for biologically active LTB, was confirmed by GM1-ELISA. Oral inoculation of mice with lyophilized transgenic rice calli containing LTB generated significant IgG antibody titers against bacterial LTB, and the sera of immunized mice inhibited the binding of bacterial LTB to GM1-ganglioside. Mice orally immunized with non-transgenic rice calli failed to generate detectable anti-LTB IgG antibody titers. Mice immunized with plant-produced LTB generated higher IgG1 antibody titers than IgG2a, indicating a Th2-type immune response. Mice orally immunized with lyophilized transgenic rice calli containing LTB elicited higher fecal IgA antibody titers than mice immunized with non-transgenic rice calli. These experimental results demonstrate that LTB proteins produced in transgenic rice callus and given to mice by oral administration induce humoral and secreted antibody immune responses. We suggest that transgenic rice callus may be suitable as a plant-based edible vaccine to provide effective protection against enterotoxigenic E. coli heat-labile toxin.  相似文献   

4.
In the present study, immunomodulatory responses of a DNA vaccine constructed by fusing Treponema pallidum (Tp) glycerophosphodiester phosphodiesterase (Gpd) to interleukin-2 (IL-2) and using chitosan (CS) nanoparticles as vectors were investigated. New Zealand white rabbits were immunized by intramuscular inoculation of control DNAs, Tp Gpd DNA vaccine, or Gpd-IL-2 fusion DNA vaccine, which were vectored by CS nanoparticles. Levels of the anti-Gpd antibodies and levels of IL-2 and interferon-γ in rabbits were increased upon inoculation of Gpd-IL-2 fusion DNA vaccine, when compared with the inoculation with Gpd DNA vaccine, with CS vectoring increasing the effects. The Gpd-IL-2 fusion DNA vaccine efficiently enhanced the antigen-specific lymphocyte proliferative response. When the rabbits were challenged intradermally with 10(5) Tp (Nichols) spirochetes, the Gpd-IL-2 fusion DNA vaccine conferred better protection than the Gpd DNA vaccine (P?< 0.05), as characterized by lower detectable amounts of dark field positive lesions (17.5%), lower ulcerative lesion scores (15%), and faster recovery. Individuals treated with the Tp Gpd-IL-2 fusion DNA vaccine vectored by CS nanoparticles had the lowest amounts of dark field positive lesions (10%) and ulcerations (5%) observed and the fastest recovery (42 days). These results indicate that the Gpd-IL-2 fusion DNA vaccine vectored by CS nanoparticles can efficiently induce Th1-dominant immune responses, improve protective efficacy against Tp spirochete infection, and effectively attenuate development of syphilitic lesions.  相似文献   

5.
目的:初步评价马耳他布鲁菌M5疫苗株omp25c基因对其毒力及免疫保护性的影响。方法:利用同源重组的方法,用卡那霉素抗性基因替换M5的omp25c(BMEI1829)基因,得到缺失突变株M5Δomp25c;分别用M5Δomp25c和M5免疫小鼠,在免疫后不同时间点处死小鼠,通过脾脏细菌计数分析缺失突变株在小鼠体内的毒力,通过检测IgG和IFN-γ的水平分析缺失突变株在小鼠体内诱导的体液和细胞免疫应答能力,通过攻毒实验评价突变株的免疫保护效果。结果:与M5株相比,M5Δomp25c在小鼠脾脏内的存活时间较短,在第4周时未能检出;M5Δomp25c免疫小鼠诱导产生的IgG水平在第4周达到最高,第6周开始下降;M5Δomp25c免疫小鼠诱导分泌的IFN-γ水平在第4周达到最高为790pg/mL,第6周时浓度降至530pg/mL,整体趋势显著低于阳性对照组;接种了M5Δomp25c的小鼠用布鲁菌强毒株16M攻毒后,免疫保护效果也下降。结论:缺失omp25c的突变株毒力减弱,诱导的体液和细胞免疫水平及免疫保护效果下降,说明omp25c基因是马耳他布鲁菌M5疫苗株的毒力相关基因,对疫苗株M5的免疫应答和免疫保护效果有一定的影响。  相似文献   

6.
Wang Q  Lei C  Wan H  Liu Q 《DNA and cell biology》2012,31(4):489-495
This study evaluated the immune response elicited by a ubiquitin (Ub)-fused MPT64 DNA vaccine against Mycobacterium tuberculosis. BALB/c mice were vaccinated with plasmid DNA encoding MPT64 protein, Ub-fused MPT64 DNA vaccine (UbGR-MPT64), and negative DNA vaccines, respectively. MPT64 DNA vaccine immunization induced a Thl-polarized immune response. The production of Thl-type cytokine (interferon-gamma [IFN-γ]) and proliferative T cell responses were enhanced significantly in mice immunized with UbGR-MPT64 fusion DNA vaccine, compared with nonfusion DNA vaccine. Moreover, this fusion DNA vaccine also resulted in an increased relative ratio of IgG2a to IgGl and the cytotoxicity of T cells. IFN-γ intracellular staining of splenocytes indicated that UbGR-mpt64 fusion DNA vaccine activated CD4+ and CD8+ T cells, particularly CD8+ T cells. Thus, this study demonstrated that the UbGR-MPT64 fusion DNA vaccine inoculation could improve antigen-specific cellular immune responses, which is helpful for protection against TB.  相似文献   

7.
We used a Balb/c mouse model of pneumococcal pneumonia to investigate the protection mechanisms induced by immunization with a polyvalent 23 epitope polysaccharide pneumonia vaccine. Groups of mice were injected x 4 times s.c. within one month, with this vaccine preparation. Mice were subsequently challenged at day 45, with a lethal, intratracheal inoculum of two strains of Streptococcus pneumoniae - either a highly virulent and strongly immunogenic serotype 3 strain (P4241), or a less virulent and weakly immunogenic serotype 19F strain (P15986). The intratracheal S. pneumoniae challenge-induced lethality, antibody response, bacterial clearance, and cytokine secretions were monitored to analyze the strain-adapted effector mechanisms. Pulmonary levels of TNFalpha, IL-6, IL-1 beta, MIP-1 alpha, KC, MCP-1/JE and MIP-2 cytokines were determined up to 48 hours post-infection. Survival rates were 82% and 100% among vaccinated animals challenged at day 45 with P4241, and P1598 mice respectively, and 0% in non-vaccinated mice (p<0.001). Survival was associated with a rapid bacterial clearance from blood and lungs, which similar for the two strains. Immunization induced a serotype-specific antibody response. Kinetics of the cytokine profile in the lung following intratracheal inoculation with the 4241 strain was different in animals vaccinated 45 days previously, compared to na?ve, control mice. Generally speaking the bacterial-induced inflammatory cytokine response induced with the 4241 strain was much weaker in vaccinated animals than in control mice. The only cytokines showing a greater increase in vaccinated mice compare to control animals were IL-1 beta, KC and MCP-1. Production of TNFalpha and IL-6 was lower in vaccinated animals than in controls. At variance with the previous bacteria strain-induced cytokine profile, infection with the P15986 strain induced a strong inflammatory response, with a substantial increase in all the cytokine tested, which was similar in vaccinated and in na?ve, control animals, except for MIP-1 alpha, which was the only mediator significantly more produced by vaccinated animals than by na?ve, control mice following P15986 infection. The distinct cytokine profiles, which were observed in this study depending upon the two strains of S. pneumoniae used for challenge, demonstrated that protection against each strain was obtained through a different defence strategy.  相似文献   

8.
The fatality rate associated with Streptococcus pneumoniae meningitis remains high despite adequate antibiotic treatment. IL-1 is an important proinflammatory cytokine, which is up-regulated in brain tissue after the induction of meningitis. To determine the role of IL-1 in pneumococcal meningitis we induced meningitis by intranasal inoculation with 8 x 10(4) CFU of S. pneumoniae and 180 U of hyaluronidase in IL-1R type I gene-deficient (IL-1R(-/-)) mice and wild-type mice. Meningitis resulted in elevated IL-1alpha and IL-1beta mRNA and protein levels in the brain. The absence of an intact IL-1 signal was associated with a higher susceptibility to develop meningitis. Furthermore, the lack of IL-1 impaired bacterial clearance, as reflected by an increased number of CFU in cerebrospinal fluid of IL-1R(-/-) mice. The characteristic pleocytosis of meningitis was not significantly altered in IL-1R(-/-) mice, but meningitis was associated with lower brain levels of cytokines. The mortality was significantly higher and earlier in the course of the disease in IL-1R(-/-) mice. These results demonstrate that endogenous IL-1 is required for an adequate host defense in pneumococcal meningitis.  相似文献   

9.
【目的】本研究利用Asd+平衡致死系统构建表达巴氏杆菌毒素(Pasteurella multocida toxin,PMT)的重组猪霍乱沙门氏菌株,并对重组菌株的生物学特性进行比较研究。【方法和结果】通过基因克隆的方法构建表达PMT的重组质粒pYA-PmtC,再将其电转化减毒猪霍乱沙门氏菌C500的asd基因缺失株C501,构建口服活疫苗菌株C501(pYA-PmtC)。研究结果表明重组菌株C501(pYA-PmtC)的生化特性、血清型和生长速度与亲本菌株C500一致;在没有选择压力的条件下,C501(pYA-PmtC)能够稳定遗传重组质粒及其外源基因片段,并能稳定、高效、分泌性表达30.5kDa的外源保护性抗原rPmtC。C501(pYA-PmtC)腹腔感染BALB/c小鼠的LD50为8.5×106CFU,毒力稍低于C500(LD50为4.4×106CFU);口服接种C501(pYA-PmtC)和C500的所有仔猪未见任何发病症状,两者没有显著差别。【结论】本研究利用Asd+平衡致死系统的原理构建表达T+Pm保护性抗原重组猪霍乱沙门氏菌弱毒菌株C501(pYA-PmtC),为进一步开发猪萎缩性鼻炎-副伤寒的双价基因工程疫苗奠定基础。  相似文献   

10.
本课题旨在研究结核分枝杆菌Mtb8.4基因疫苗与人白细胞介素12(hIL-12)联合免疫小鼠所诱导的细胞免疫应答及对小鼠结核杆菌感染的免疫保护效果。40只C57BL/6N小鼠随机分为Mtb8.4基因疫苗+hIL-12质粒组(联合免疫组)、Mtb8.4基因疫苗组、卡介苗(BCG)组、空载体组和PBS组,基因疫苗、空载体和PBS,经肌内注射法免疫各组小鼠,每隔3周免疫1次,共免疫3次,BCG组经尾部皮下注射1×106 CFU BCG免疫1次。免疫4周后,每组处死3只小鼠,采用酶联免疫吸附法(ELISA)检测脾细胞培养上清中细胞因子水平;乳酸脱氢酶(LDH)释放法检测细胞毒性T细胞(CTL)杀伤活性。每组其余5只小鼠用结核杆菌H37Rv强毒株经尾静脉攻击,4周后,计数肺和脾组织中的结核杆菌菌落数,对小鼠部分肺和脾组织作病理切片,HE染色观察组织病变程度,Z-N染色查抗酸杆菌,观察该疫苗对小鼠结核杆菌感染的免疫保护效果。结果显示,联合免疫组能诱导较强的抗原特异性Th1型细胞免疫应答,免疫小鼠脾细胞培养上清液IFN-γ和IL-2水平(分别为1493.34±8.128pg/mL、747.489±48.676pg/mL),显著高于Mtb8.4基因疫苗组,与BCG组相当,IL-4分泌减少,特异性CTL杀伤活性增强,对小鼠结核杆菌感染有较好的免疫保护效果,使小鼠肺和脾组织中的结核杆菌菌落数显著减少,组织病变明显减轻,其效果与卡介苗(BCG)组相当,优于Mtb8.4基因疫苗组。表明hIL-12表达质粒与Mtb8.4基因疫苗联合免疫后,能够增强Mtb8.4基因疫苗所诱导的细胞免疫应答,使Mtb8.4基因疫苗的免疫效力得到很大提高。  相似文献   

11.
Despite the advantages of DNA vaccines, overcoming their lower efficacy relative to that of conventional vaccines remains a challenge. Here, we constructed a human endogenous retrovirus (HERV) envelope-coated, nonreplicable, baculovirus-based HA vaccine against swine influenza A/California/04/2009(H1N1) hemagglutin (HA) (AcHERV-sH1N1-HA) as an alternative to conventional vaccines and evaluated its efficacy in two strains of mice, BALB/c and C57BL/6. A commercially available, killed virus vaccine was used as a positive control. Mice were intramuscularly administered AcHERV-sH1N1-HA or the commercial vaccine and subsequently given two booster injections. Compared with the commercial vaccine, AcHERV-sH1N1-HA induced significantly higher levels of cellular immune responses in both BALB/c and C57BL/6 mice. Unlike cellular immune responses, humoral immune responses depended on the strain of mice. Following immunization with AcHERV-sH1N1-HA, C57BL/6 mice showed HA-specific IgG titers 10- to 100-fold lower than those of BALB/c mice. In line with the different levels of humoral immune responses, the survival of immunized mice after intranasal challenge with sH1N1 virus (A/California/04/2009) depended on the strain. After challenge with 10-times the median lethal dose (MLD50) of sH1N1 virus, 100% of BALB/c mice immunized with the commercial vaccine or AcHERV-sH1N1-HA survived. In contrast, C57BL/6 mice immunized with AcHERV-sH1N1-HA or the commercial vaccine showed 60% and 70% survival respectively, after challenge with sH1N1 virus. In all mice, virus titers and results of histological analyses of lung tissues were consistent with the survival data. Our results indicate the importance of humoral immune response as a major defense system against influenza viral infection. Moreover, the complete survival of BALB/c mice immunized with AcHERV-sH1N1-HA after challenge with sH1N1 virus suggests the potential of baculoviral vector-based vaccines to achieve an efficacy comparable to that of killed virus vaccines.  相似文献   

12.
The present study evaluated the immune response elicited by a ubiquitin-fused ESAT-6 DNA vaccine against Mycobacterium tuberculosis. BALB/c mice were vaccinated with plasmid DNA encoding ESAT-6 protein, ubiquitin-fused ESAT-6 DNA vaccine (UbGR-ESAT-6), pcDNA3-ubiquitin and blank vector, respectively. ESAT-6 DNA vaccine immunization induced a Thl-polarized immune response. The production of Thl-type cytokine (IFN-γ) and proliferative T-cell responses was enhanced significantly in mice immunized with UbGR-ESAT-6 fusion DNA vaccine, compared to non-fusion DNA vaccine. This fusion DNA vaccine also resulted in an increased relative ratio of IgG2a to IgGl and the cytotoxicity of T cells. Thus, the present study demonstrated that the UbGR-ESAT-6 fusion DNA vaccine inoculation improved antigen-specific cellular immune responses, which is helpful for protection against tuberculosis infection.  相似文献   

13.
In the present study, we comparatively assessed the pathophysiological mechanisms developed during lung infection of BALB/C female mice infected by an original wild type Klebsiella pneumoniae subsp. ozaenae strain (CH137) or by a referent subspecies K. pneumoniae. subsp. pneumoniae strain (ATCC10031). The mice infected with 2.10? CFU K. p. subsp. pneumoniae (n = 10) showed transient signs of infection and all of them recovered. All of those infected with 1.10? CFU K. p. subsp. ozaenae (n = 10) developed pneumonia within 24 h and died between 48 and 72 h. Few macrophages, numerous polymorphonuclear cells and lymphocytes were observed in their lungs in opposite to K. p. subsp. pneumoniae. In bronchoalveolar lavage, a significant increase in MIP-2, IL-6, KC and MCP-1 levels was only observed in K. p. subsp. ozaenae infected mice whereas high levels of TNF-α were evidenced with the two subspecies. Our findings indicated a lethal effect of a wild type K. p. subsp. ozaenae strain by acute pneumonia reflecting an insufficient alveolar macrophage response. This model might be of a major interest to comparatively explore the pathogenicity of K. p. subsp ozaenae strains and to further explore the physiopathological mechanisms of gram-negative bacteria induced human pneumonia.  相似文献   

14.
Li M  Yu DH  Cai H 《DNA and cell biology》2008,27(8):405-413
In this study, we evaluated the potential of the synthetic antimicrobial peptide KLKL(5)KLK to augment the immune response and protective efficacy of the combined DNA vaccine against Mycobacterium tuberculosis. We demonstrated that immunization of mice with a combined DNA vaccine/KLKL(5)KLK mixture resulted in significantly higher protection than that induced by the combined DNA vaccine alone or by the Bacillus Calmette-Guérin (BCG) vaccine after challenge with a virulent M. tuberculosis strain (p < 0.01). Detailed analysis of the immune response revealed that the combined DNA vaccine/KLKL(5)KLK mixture stimulated higher IL-12 secretion, resulted in significantly more CD4(+)/CD44(high) and CD8(+)/CD44(high) T-cell production (p < 0.01), elicited 1.5- to 1.8-fold higher interferon-gamma (IFN-gamma) production, and produced stronger antigen-specific cytotoxic T lymphocyte activity than the combined DNA vaccine alone. Further, 125 days after the final immunization, mice immunized with the combined DNA vaccine/KLKL(5)KLK mixture significantly outpaced their combined DNA vaccine-immunized counterparts regarding antigen-specific IFN-gamma-producing cell numbers (p < 0.05) and antigen-specific IgG titers, indicating that KLKL(5)KLK provides a stronger and longer Th1-associated immune response. Taken together, our results indicate that the synthetic peptide KLKL(5)KLK is a potent adjuvant that can enhance and prolong the immune response of the combined DNA vaccine against M. tuberculosis.  相似文献   

15.
Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28(4) were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d3 DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD50) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d3 DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response.  相似文献   

16.
研究人乳头瘤病毒(human papillomavirus,HPV)6b结构蛋白L1(HPV6b L1)基因佐剂增强沙眼衣原体(Chlamydia trachomatis,Ct)主要外膜蛋白(MOMP)多表位(Ct MOMP168)DNA疫苗的免疫效果的可能性.构建pcDNA3.1(+)/HPV6b L1/Ct MOMP168融合重组质粒,转染COS-7细胞,用RT-PCR、激光共聚焦显微技术及Western印迹技术检测其表达.分别用pcDNA3.1(+)/HPV6b L1/Ct MOMP168、pcDNA3.1(+)/Ct MOMP168及pcDNA3.1(+)质粒肌肉免疫BALB/c小鼠,ELISA检测外周血中IgG及阴道分泌物中sIgA.结果表明,pcDNA3.1(+)/HPV6b L1/CtMOMP168可在COS-7细胞中表达;Ct MOMP168组和HPV6b L1/Ct MOMP168组均可刺激小鼠产生抗Ct MOMP特异性的抗体,抗体滴度随免疫次数增加而升高,且HPV6b L1/Ct MOMP168组小鼠产生的抗体滴度明显高于Ct MOMP168组(P0.05).结果提示,分子佐剂HPV6b L1与CtMOMP多表位基因融合能够显著增强Ct MOMP多表位DNA疫苗的体液免疫应答.  相似文献   

17.
Secondary pneumococcal pneumonia is a serious complication during and shortly after influenza infection. We established a mouse model to study postinfluenza pneumococcal pneumonia and evaluated the role of IL-10 in host defense against Streptococcus pneumoniae after recovery from influenza infection. C57BL/6 mice were intranasally inoculated with 10 median tissue culture infective doses of influenza A (A/PR/8/34) or PBS (control) on day 0. By day 14 mice had regained their normal body weight and had cleared influenza virus from the lungs, as determined by real-time quantitative PCR. On day 14 after viral infection, mice received 10(4) CFU of S. pneumoniae (serotype 3) intranasally. Mice recovered from influenza infection were highly susceptible to subsequent pneumococcal pneumonia, as reflected by a 100% lethality on day 3 after bacterial infection, whereas control mice showed 17% lethality on day 3 and 83% lethality on day 6 after pneumococcal infection. Furthermore, 1000-fold higher bacterial counts at 48 h after infection with S. pneumoniae and, particularly, 50-fold higher pulmonary levels of IL-10 were observed in influenza-recovered mice than in control mice. Treatment with an anti-IL-10 mAb 1 h before bacterial inoculation resulted in reduced bacterial outgrowth and markedly reduced lethality during secondary bacterial pneumonia compared with those in IgG1 control mice. In conclusion, mild self-limiting influenza A infection renders normal immunocompetent mice highly susceptible to pneumococcal pneumonia. This increased susceptibility to secondary bacterial pneumonia is at least in part caused by excessive IL-10 production and reduced neutrophil function in the lungs.  相似文献   

18.
Although heat-shock proteins represent major antigens in a wide spectrum of bacterial infections, their immunogenicity is not known for Mycoplasma pneumoniae. M. pneumoniae is a major human respiratory pathogen and it has been suggested that its groEL gene might be dispensable in vitro. Using the specific monoclonal antibody 2C2/C3 we found an abundant synthesis of about 58 kDa GroEL in M. pneumoniae reference strains and in 15 clinical isolates examined at low and higher passages. In patients with acute respiratory disease caused by M. pneumoniae immunoblot analyses showed relatively low prevalence of systemic antibodies against its GroEL protein. Whereas all patients had strong antibody response to the P1 adhesin, only 5 of 29 patients (17.2%) had antibodies to GroEL. Among them, patient RI raised an early and very strong antibody response to GroEL. During the convalescent phase, levels of his serum IgG (mainly IgG2) to GroEL increased and were higher than levels of IgG to P1.  相似文献   

19.
将5个toxA基因片段N1518、C2345、N3172、N3388和C2115分别克隆到合适的原核表达载体pET-28a(b,c)系统,其中pET28a-N1518和pET28b-C2115在大肠杆菌成功表达,获得大小分别为57kDa和78kDa的融合蛋白rPMT-N和rPMT-C,Western blot检测证实两种表达产物均具有反应原性.分别以200μg rPMT-N和rPMT-C对小白鼠进行体内生物学活性试验,结果两种表达蛋白均不能致死小白鼠;体外细胞毒性试验证实896ng/mL的rPMT-N能使Veto细胞发生病变,而rPMT-C对Veto细胞无明显毒性作用.将rPMT-N和rPMT-C制成亚单位疫苗,同时设天然PMT及无菌PBS对照组,间隔2周分2次皮下免疫小白鼠.二免后2周用8.2×105 CFU的HN-13株T Pm进行腹腔攻毒,结果rPMT-N组保护率为90.0%(9/10),rPMT-C组保护率为50.0%(5/10),天然PMT组保护率为80.0%(8/10).综上试验表明,rPMT-N具有良好的生物学活性和免疫原性,可作为PAR疫苗添加成分,显示了良好的应用前景.  相似文献   

20.
为了提高表达GP5的猪繁殖与呼吸综合征病毒(PRRSV)DNA疫苗的免疫效应,将具有蛋白转导功能的牛疱疹病毒1型(BHV-1)VP22基因插入到经过修饰具有更好免疫原性的PRRSV修饰型ORF5基因(ORF5M)上游,构建VP22和ORF5M融合表达的真核表达质粒pCI-VP22-ORF5M。经间接免疫荧光试验(IFA)和Westernblot检测证实体外表达后,免疫BALB/c小鼠,检测小鼠免疫后的GP5特异性ELISA抗体、抗PRRSV中和抗体和脾淋巴细胞增殖反应,并与非融合的真核表达质粒pCI-ORF5M进行比较。结果显示,融合表达VP22-GP5的DNA疫苗 pCI-VP22ORF5M诱导的体液免疫和细胞免疫反应均明显高于非融合表达的DNA疫苗pCI-ORF5M,表明蛋白转导相关蛋白BHV-1 VP22能显著增强表达GP5的PRRSV DNA 疫苗的免疫效应,有效发挥了基因免疫佐剂效应;这为研制PRRSV高效DNA疫苗奠定了基础,同时也为其它疾病的高效新型疫苗研究提供了思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号