首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the findings of a study conducted to determine peak forces generated in the human spine while the individual is engaged in lifting maximum acceptable weight. Calculations of forces and moments, acting on each body segment, were based on film data collected on four individuals for twelve variations of the manual lifting task. The variations were defined by: box-size (three different boxes were used), presence or absence of handles, and symmetry and asymmetry of the lifting task (sagittal and nonsagittal lifting). In general, lower loads were accepted for lift when lifting asymmetrically or when lifting boxes without handles or when lifting bigger boxes. However, peak forces (compressive and shear forces in the spine and ground reaction forces) for these situations were not always lower than those generated when handling either compact boxes or boxes with handles or when lifting boxes symmetrically in the sagittal plane. On the basis of these results, it was concluded that lifting loads asymmetrically or in boxes without handles or in bulky boxes is relatively much more stressful than lifting the same load symmetrically or in boxes with handles or in compact boxes.  相似文献   

2.
A series of laboratory experiments were conducted to find maximum acceptable weights in front, side, and back lifting. Fifteen college students participated in the experiment. Experimental trials for each type of lifting were conducted for 10 min for each subject at a rate of 4 lifts/min. Psychophysical methodology was used to find the acceptable weight based upon their perceived feeling of stress in the lower back. It was found that subjects are willing to lift the heaviest load using back lifting (average maximum acceptable weight: 41.5 lbs). Front lifting was the close second with 39.4 lbs. Also, there was a significant difference in maximum acceptable weight of lift between side lifting (average maximum acceptable weight: 25.5 lbs) and the other two types of lifting. It was also found that leg strength was a limiting variable for maximum acceptable weight in front lifting. Composite strength and shoulder strength were found to be limiting variables in side lifting. Composite strength was the limiting variable in the back lifting.  相似文献   

3.
Dynamically and statically determined low back moments during lifting   总被引:1,自引:0,他引:1  
Assessment of the effects of lifting on the low back has most frequently been done with the aid of static models. Many lifting movements appear to have substantial inertial components. It was of interest, therefore, to determine the size of the difference between statically and dynamically calculated lumbar moments during a demanding but not unusual manual lift observed in a metal fabrication industry.

The results of several trials by four young men showed that the dynamic model resulted in peak L4 L5 moments 19% higher on average, with a maximum difference of 52%, than those determined from the static model. The technique adopted in the lift could minimize the difference. When the inertial forces of the load itself and the load weight were incorporated into an otherwise static model (quasi-dynamic) then the resulting L4/L5 moments exceeded those of the fully dynamic model by 25%.

In many industrial tasks static analyses may severely underestimate the demands of dynamic lifts. These results show that a reasonably inexpensive approach in lifting task analysis is to measure the dynamic forces of the load on the hands and to use these in an otherwise static model. This results in a conservative assessment of the injury risk of lifts at least of the type reported in this study.  相似文献   


4.
There are many outdoor work environments that involve the combination of repetitive, fatiguing lifting tasks and less-than-optimal footing (muddy/slippery ground surfaces). The focus of the current research was to evaluate the effects of lifting-induced fatigue of the low back extensors on lifting kinematics and ground reaction forces. Ten participants performed a repetitive lifting task over a period of 8 minutes. As they performed this task, the ground reaction forces and whole body kinematics were captured using a force platform and magnetic motion tracking system, respectively. Fatigue was verified in this experiment by documenting a decrease in the median frequency of the bilateral erector spinae muscles (pretest-posttest). Results indicate significant (p < 0.05) increases in the magnitude of the peak anterior/posterior (increased by an average of 18.3%) and peak lateral shear forces (increased by an average of 24.3%) with increasing time into the lifting bout. These results have implications for work environments such as agriculture and construction, where poor footing conditions and requirements for considerable manual materials handling may interact to create an occupational scenario with an exceptionally high risk of a slip and fall.  相似文献   

5.
The problem of injuries in manual materials handling remains a big concern in industrialized countries. It has become imperative in occupational biomechanics to extend the analyses to all pertinent factors involved in working tasks and to adopt an experimental approach leading to the understanding of the relative demands imposed simultaneously on all body joints. The evaluation of joint muscular work and the processes of energy generation, absorption and transfer appears promising as a tool in the detection of risk factors in working tasks. The present study consisted of evaluating two tasks (lifting and lowering) performed at five different heights (from 15 to 185 cm) with five different loads (from 3.3 to 22.0 kg). The subjects were eight experienced workers from a food product warehouse. Cinematography techniques and two AMTI force platforms were used to collect the data. Dynamic and planar segmental analyses were performed to calculate the net muscular moments at the joints, and work was calculated from the integration of muscular power. Factorial analyses of variance with repeated measures were performed on the dependent variables to evaluate the main effects of tasks, loads, and heights (for lifting and for lowering) and the interactions. The results revealed the adoption of different movement strategies in the handling of heavier loads. In the first, a larger emphasis of energy transfer and movement economy; in the second, a reduction in the relative contribution of the shoulders to the detriment of an increased participation of the lower back and hips was found. The comparison between lifting and lowering tasks indicated that lifting was only slightly more demanding than lowering for maximum muscular moments (about 15%) but much more so for mechanical work (about 40%); however, the nature of the efforts in eccentric contractions suggests that the lowering of heavy loads may be risky. Finally, the results revealed the deviation of height of handling from the waist level to be a significant factor. Handling at lower heights was considerably more demanding but the work was shared by several joints, mainly by the hips and lower back (about 70%); on the other hand, in handling above the waist, the work efforts were concentrated on the upper limbs (about 80%). In most cases, the participation of lower limbs was minimal and some movement strategies are suggested for future research.  相似文献   

6.
In our laboratory, we have developed a prototype of a personal lift augmentation device (PLAD) that can be worn by workers during manual handling tasks involving lifting or lowering or static holding in symmetric and asymmetric postures. Our concept was to develop a human-speed on-body assistive device that would reduce the required lumbar moment by 20-30% without negative consequences on other joints or lifting kinematics. This paper provides mathematical proof using simplified free body diagrams and two-dimensional moment balance equations. Empirical proof is also provided based on lifting trials with nine male subjects who executed sagittal plane lifts using three lifting styles (stoop, squat, free) and three different loads (5, 15, and 25kg) under two conditions (PLAD, No-PLAD). Nine Fastrak sensors and six in-line strap force sensors were used to estimate the reduction of compressive and shear forces on L4/L5 as well as estimate the forces transferred to the shoulders and knees. Depending on lifting technique, the PLAD applied an added 23-36Nm of torque to assist the back muscles during lifting tasks. The peak pelvic girdle contact forces were estimated and their magnitudes ranged from 221.3+/-11.2N for stoop lifting, 324.3+/-17.2N for freestyle lifts to 468.47+/-23.2N for squat lifting. The PLAD was able to reduce the compression and shear forces about 23-29% and 7.9-8.5%, respectively.  相似文献   

7.
This study compared the relationship between isokinetic lifting test (ILT) performance and a maximal operational lifting test (OLT) with that between an isoinertial progressive lifting test (PLT) and OLT. Fifty subjects performed the ILT, PLT and OLT after familiarization trials. OLT was defined as the weight of the heaviest crate that could be lifted to 1.34 m with a progressive, incremental test. ILT performance was the force generated during a single maximal simulated lift on an isokinetic dynamometer. PLT performance was the maximal weight lifted to 1.52 m with a progressive, incremental protocol on a weight stack. OLT was highly correlated with ILT (r = 0.96) and PLT (r = 0.97); the standard error was similar for both linear regression equations. The results demonstrate that a single maximal voluntary lift on an isokinetic dynamometer is as good a predictor of OLT as in the PLT presently used in military recruit centers.  相似文献   

8.
The purpose of this investigation was to examine the effects of the presence of an audience and competition on maximal weight lifting performance. Thirty-two recreationally trained participants (15 men, 17 women; 21 +/- 2.5 years) performed a 1 repetition maximum (1 RM) bench press during 3 different situations (coaction, competitive coaction, and audience condition). Subjects also completed the Activation-Deactivation Adjective Checklist Short Form following the 3 trials to measure arousal state during each of the 3 trials. Significant differences (p < 0.05) were found between competitive coaction and coaction trials as well as between audience and coaction trials. Both men and women demonstrated the highest performance in front of an audience (105 +/- 48 kg) followed by competition (103 +/- 46 kg) and then the coaction trial (93 +/- 43 kg). No significant difference in arousal was measured between trials. The data suggest that performing a maximal lift in the presence of an audience or in competition facilitates performance and support the self-presentation and self-awareness theories. Social facilitation effects should be controlled in research settings and may aid the performance of weight lifting activities during events or competition.  相似文献   

9.
Asymmetrical lifting and lowering are predominant activities in the workplace. Mechanical causes are suggested for many back injuries and the dynamic conditions within which spine loading occurs are related to spine loading increase. More data on tridimensional biomechanical lumbar spine loading during asymmetrical lifting and lowering are needed. A tridimensional dynamic multisegment model was developed to compute spinal loading for asymmetrical box-handling situations. The tridimensional positions of the anatomical markers were generated by a direct linear transformation algorithm adapted for the processing of data from two real and two virtual views (mirrors). Two force platforms measured the external forces. Five male subjects performed three variations (slow, fast and accelerated) of asymmetric lifting and two variations (slow and fast) of asymmetric lowering. The torsional, extension/flexion and lateral bending net muscular moments at the L5/S1 joint were computed and peak values selected for statistical analysis. For the lifting task, the fast and accelerated conditions showed significant increases over the slow condition for torsion, extension/flexion and lateral-bending moments. The accelerated condition also showed significant increases over the fast condition for extension. A comparison between lifting and lowering tasks showed equivalent loadings for torsion and extension. The moments were compared to average maximal values measured on equivalent male subject populations by isokinetic dynamometry. This showed torsional and extension values of 30 and 83% of the maximal possible subject capacity, respectively. These results demonstrated that dynamic factors do influence the load on the spine and highlighted the influence of both lifting and lowering on the loading of the spine. This suggested that for a more complete analysis of asymmetrical handling, the maximal velocity and acceleration produced during lifting should be included.  相似文献   

10.
Scapula and humerus motion associated with common manual wheelchair tasks is hypothesized to reduce the subacromial space. However, previous work relied on either marker-based motion capture for kinematic measures, which is prone to skin-motion artifact; or ultrasound imaging for arthrokinematic measures, which are 2D and acquired in statically-held positions. The aim of this study was to use a fluoroscopy-based approach to accurately quantify glenohumeral kinematics during manual wheelchair use, and compare tasks for a subset of parameters theorized to be associated with mechanical impingement. Biplane images of the dominant shoulder were acquired during scapular plane elevation, propulsion, sideways lean, and weight-relief raise in ten manual wheelchair users with spinal cord injury. A computed tomography scan of the shoulder was obtained, and model-based tracking was used to quantify six-degree-of-freedom glenohumeral kinematics. Axial rotation and superior/inferior and anterior/posterior humeral head positions were characterized for full activity cycles and compared between tasks. The change in the subacromial space was also determined for the period of each task defined by maximal change in the aforementioned parameters. Propulsion, sideways lean, and weight-relief raise, but not scapular plane elevation, were marked by mean internal rotation (8.1°, 10.8°, 14.7°, −49.2° respectively). On average, the humeral head was most superiorly positioned during the weight-relief raise (1.6 ± 0.9 mm), but not significantly different from the sideways lean (0.8 ± 1.1 mm) (p = 0.191), and much of the task was characterized by inferior translation. Scaption was the only task without a defined period of superior translation on average. Pairwise comparisons revealed no significant differences between tasks for anterior/posterior position (task means range: 0.1–1.7 mm), but each task exhibited defined periods of anterior translation. There was not a consistent trend across tasks between internal rotation, superior translation, and anterior translation with reductions in the subacromial space. Further research is warranted to determine the likelihood of mechanical impingement during these tasks based on the measured task kinematics and reductions in the subacromial space.  相似文献   

11.
The aim of this study was to examine the effect of the interaction of circamensal and diurnal rhythms in temperature upon the production of maximal voluntary muscle force. Ten eumenorrheic females (mean age: 24 +/- 3 yr mean body mass: 58.4 +/- 6.9 kg) participated in the experiment at both 06:00 and 18:00h at the mid-point of both the follicular and luteal phases of the menstrual cycle. Subjects performed tasks of maximal isometric lifting strength (MILS) at knee height, and endurance time (t) for lifting 45% of MILS, upon an isometric lift dynamometer. Body temperature was elevated at 18:00h and in the luteal phase by 0.52 +/- 0.4 and 0.26 +/- 0.35 degrees C, respectively. The amplitude of the diurnal variation in temperature was blunted by 0.3 degrees C within the luteal phase. Maximal isometric performance was elevated by 8% at 18:00h in the luteal phase of the cycle (p < 0.05 interaction for MILS) but unaffected by time of day in the follicular phase. Endurance time was unaffected by time or phase (p > 0.05). It should be noted that the classic diurnal rhythm in maximal voluntary isometric muscle force may not be evident in all phases of the female menstrual cycle.  相似文献   

12.
The purpose of this study was to determine the vertical and lateral forces applied to the bar during a maximal and a submaximal effort bench press lifts. For this study, 10 male and 8 female recreational lifters were recruited (mean height: 1.71 ± 0.08 m; mass: 73.7 ± 13.6 kg) and were asked to perform a maximal and submaximal (80% of maximal lift) bench press. These lifts were performed with a bar instrumented to record forces applied to it, via the hands, in the vertical direction and along the long axis of the bar. To determine the position of the bar and timing of events, 3D kinematic data were recorded and analyzed for both lifts. The subjects in this study averaged a maximal lift of 63 ± 29 kg (90 ± 31% bodyweight). The peak vertical force was 115 ± 22% (percentage of load), whereas for the submaximal condition it was 113 ± 20%; these forces were statistically different between conditions; they were not when expressed as a percentage of the load (p > 0.05). During all the lifts, the lateral forces were always outward along the bar. The lateral force profile was similar to that of the vertical force, albeit at a lesser magnitude. During the lift phase, the peak lateral force was on average 26.3 ± 3.9% of the vertical force for the maximal lift and 23.7 ± 3.9% of the vertical force for the submaximal lift. Given that the amount of force applied laterally to the bar was a similar percentage of vertical force irrespective of load, it appears that the generation of lateral forces during the bench press is a result of having the muscles engaged in generating vertical force.  相似文献   

13.
Accurate estimation of occupational performance capability facilitates better job (re-) design by informing workplace parties about the potential mismatches between job demands and the capability of their labour force. However, estimating occupational performance requires consideration of multiple factors that may govern capacity. In this paper, a novel model is described that uses a stochastic algorithm to estimate how variability in underlying biomechanical constraints affects hand force capability. In addition, the model estimates psychophysically acceptable hand force capacity thresholds by applying a biomechanical weakest link approach. Model estimates were tested against experimentally determined maximal and psychophysically determined hand forces in two exertion directions in constrained postures. The model underestimated maximum hand force capacity relative to measured maximum hand force by 30% and 35% during downward pressing and horizontal pulling, respectively. These values are consistent with those observed using previous two-dimensional models. Psychophysically acceptable hand forces were also underestimated by 29% during both pressing and pulling. Since the psychophysical estimates were scaled as a percentage of the estimated maximum capacity, this suggests that the underestimation in both predictions may be corrected by improving estimates of maximum hand force. Psychophysically acceptable forces were observed to be partially governed by demands at the biomechanical weakest link.  相似文献   

14.
Surface electromyography (sEMG) is commonly used to estimate muscle demands in occupational tasks. To allow for comparisons, sEMG amplitude is normalized to muscle specific maximum voluntary contractions (MVCs) performed in a standardized set of postures. However, maximal sEMG amplitude in shoulder muscles is highly dependent on arm posture and therefore, normalizing task related muscular activity to standard MVCs may lead to misinterpretation of task specific muscular demands. Therefore, the purpose of this study was to investigate differences in commonly monitored shoulder muscles using normalized sEMG amplitude between maximal exertions at different hand locations and across force exertion directions relative to standard MVCs. sEMG was recorded from the middle deltoid, pectoralis major sternal head, infraspinatus, latissimus dorsi, and upper trapezius. Participants completed standardized muscle-specific MVCs and two maximal exertions in 5 hand locations (low left, low right, high left, high right, and central) in each of the four force directions (push, pull, up, and down). Peak sEMG was analyzed in the direction(s) that elicited the highest signal for each muscle. All muscles differed by location (p < 0.05). Latissimus dorsi had the greatest activation during pulls (32–135% MVC); upper trapezius and middle deltoid while exerting upwards (73–103% and 42–78% MVC, respectively); infraspinatus while pushing (38–79% MVC); and pectoralis major activation was the highest during downwards exertions (48–84% MVC). Normalization of location specific maximal exertions to standard muscle specific MVCs underestimated maximal activity across 90% of the tasks in all shoulder muscles tested, except for latissimus dorsi where amplitudes were overestimated in low right hand location. Normalization of location specific muscle activity to standard muscle specific MVCs often underestimates muscle activity in task performance and is cautioned against if the goal is to accurately estimate muscle demands.  相似文献   

15.
Some studies have shown that manual asymmetries decrease in older age. These results have often been explained with reference to models of reduced hemispheric specialisation. An alternative explanation, however, is that hand differences are subtle, and capturing them requires tasks that yield optimal performance with both hands. Whereas the hemispheric specialisation account implies that reduced manual asymmetries should be reliably observed in older adults, the ‘measurement difficulty’ account suggests that manual asymmetries will be hard to detect unless a task has just the right level of difficulty—i.e. within the ‘Goldilocks Zone’, where it is not too easy or too hard, but just right. Experiment One tested this hypothesis and found that manual asymmetries were only detected when participants performed in this zone; specifically, performance on a tracing task was only superior in the preferred hand when task constraints were high (i.e. fast speed tracing). Experiment Two used three different tasks to examine age differences in manual asymmetries; one task produced no asymmetries, whilst two tasks revealed asymmetries in both younger and older groups (with poorer overall performance in the old group across all tasks). Experiment Three revealed task-dependent asymmetries in both age groups, but highlighted further detection difficulties linked with the metric of performance and compensatory strategies used by participants. Results are discussed with reference to structural learning theory, whereby we suggest that the processes of inter-manual transfer lead to relatively small performance differences between the hands (despite a strong phenomenological sense of performance disparities).  相似文献   

16.
Seafaring occupations have been shown to place operators at an increased risk for injury. The purpose of this study was to understand better the demands of a moving environment on the ability of a person to perform specific lifting tasks. Subjects lifted a 15-kg load under four different lifting conditions. A 6-degree-of-freedom ship motion simulator imposed repeatable deck motions under foot while subjects executed the lifting tasks. Subjects were oriented in three different positions on the simulator floor to inflict different motion profiles. Electromyographic records of four muscles were collected bilaterally, and thoracolumbar kinematics were measured. A repeated-measures ANOVA was employed to assess trunk motions and muscle activities across lifting and motion conditions. The erector spinae muscles showed a trend toward significant differences for motion effects. Maximal sagittal velocities were significantly smaller for all motion states in comparison with the stable condition (p 相似文献   

17.
The bench press is one of the most popular weight training exercises. Although most training regimens incorporate multiple repetition sets, there are few data describing how the kinematics of a lift change during a set to failure. To examine these changes, recreational lifters (10 men and 8 women) were recruited. The maximum weight each subject could bench press (1RM) was determined. Subjects then performed as many repetitions as possible at 75% of the 1RM load. Three-dimensional kinematic data were recorded and analyzed for all lifts. Statistical analysis revealed that differences between maximal and submaximal lifts and the kinematics of a submaximal lift change as a subject approaches failure in a set. The time to lift the bar more than doubled from the first to the last repetition, causing a decrease in both mean and peak upward velocity. Furthermore, the peak upward velocity occurred much earlier in the lift phase in these later repetitions. The path the bar followed also changed, with subjects keeping the bar more directly over the shoulder during the lift. In general, most of the kinematic variables analyzed became more similar to those of the maximal lift as the subjects progressed through the set, but there was considerable variation between subjects as to which repetition was most like the maximal lift. This study shows that there are definite changes in the lifting kinematics in recreational lifters during a set to failure and suggests it may be particularly important for coaches and less-skilled lifters to focus on developing the proper bar path, rather than reaching momentary muscular failure, in the early part of a training program.  相似文献   

18.
Stooped, restricted, kneeling, and other awkward postures adopted during manual materials handling have frequently been associated with LBP onset. However, lift assessment tools have focused on materials handling performed in an upright, or nearly upright standing posture. Unfortunately, many of the tools designed to analyze standing postures are not easily adapted to jobs requiring restricted postures. Therefore, the objective of this study was to evaluate spinal loading during manual materials handing in kneeling postures and determine if those loads can be predicted using simple regression. An EMG-driven biomechanical model, previously validated for upright lifting, was adapted for use in kneeling tasks. Subjects knelt under a 1.07m ceiling and lifted luggage of six weights (6.8, 10.9, 15.0, 19.1, 23.1 and, 27.2kgf) to one of four destination heights (0, 25.4, 53.3, 78.7cm). Spine loading was significantly affected by both destination height and load weight. Destination height increased compression, AP shear and lateral shear by an average of 14.5, 3.7 and 6.6N respectively per cm height increase. Load weight increased compression, AP shear and lateral shear by an average of 83.8, 27.0 and 13.1N respectively per kgf lifted. Regression equations were developed to predict peak spine loading using subject height, load weight and destination height with R(2) values of 0.62, 0.51 and 0.57 for compression, AP and lateral shear respectively.  相似文献   

19.
Climbing is an increasingly popular recreational and competitive behavior, engaged in a variety of environments and styles. However, injury rates are high in climbing populations, especially in the upper extremity and shoulder. Despite likely arising from an arboreal, climbing ancestor and being closely related to primates that are highly proficient climbers, the modern human shoulder has devolved a capacity for climbing. Limited biomechanical research exists on manual climbing performance. This study assessed kinematic and muscular demands during a bimanual climbing task that mimicked previous work on climbing primates. Thirty participants were recruited – 15 experienced and 15 inexperienced climbers. Motion capture and electromyography (EMG) measured elbow, thoracohumeral and trunk angles, and activity of twelve shoulder muscles, respectively, of the right-side while participants traversed across a horizontal climbing apparatus. Statistical parametric mapping was used to detect differences between groups in kinematics and muscle activity. Experienced climbers presented different joint motions that more closely mimicked the kinematics of climbing primates, including more elbow flexion (p = 0.0045) and internal rotation (p = 0.021), and less thoracohumeral elevation (p = 0.046). Similarly, like climbing primates, experienced climbers generally activated the shoulder musculature at a lower percentage of maximum, particularly during the exchange from support to swing and swing to support phase. However, high muscle activity was recorded in all muscles in both participant groups. Climbing experience coincided with a positive training effect, but not enough to overcome the high muscular workload of bimanual climbing. Owing to the evolved primary usage of the upper extremity for low-force, below shoulder-height tasks, bimanual climbing may induce high risk of fatigue-related musculoskeletal disorders.  相似文献   

20.
Many studies use a reference task of an isometric maximum voluntary power grip task in a mid-pronated forearm posture to normalize their forearm electromyographic (EMG) signal amplitude. Currently there are no recommended protocols to do this. In order to provide guidance on the topic, we examined the EMG amplitude of six forearm muscles (three flexors and three extensors) during twenty different maximal voluntary efforts that included various gripping postures, force and moment exertions and compared them to a frequently used normalization task of exerting a maximum grip force, termed the reference task. 16 participants (8 male and 8 female, aged 18–26) were recruited for this study. Overall, maximal muscle activity was produced during the resisted moment tasks. When contrasted with the reference task, the resisted moment tasks produced EMG activity that was up to 2.8 times higher (p < 0.05). Although there was no one task that produced greater EMG values than the reference task for all forearm muscles, the resisted flexor and extensor moment tasks produced similar, if not higher EMG activity than the reference task for the three flexors and three extensor muscles, respectively. This suggests that researchers wishing to normalize forearm EMG activity during power gripping prehensile tasks should use resisted flexor and extensor moment tasks to obtain better estimates of the forearm muscles’ maximum electrical activation magnitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号