首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Formins are well-known for promoting actin assembly, but they also play a lesser-studied role in microtubule stabilization. In this issue of Developmental Cell, Cheng et?al. (2011) demonstrate that the formin homology protein mDia3 is regulated by Aurora B Kinase and contributes to the generation of kinetochore-microtubule attachments in mitosis.  相似文献   

2.
Cdt1, a protein critical for replication origin licensing in G1 phase, is degraded during S phase but re-accumulates in G2 phase. We now demonstrate that human Cdt1 has a separable essential mitotic function. Cdt1 localizes to kinetochores during mitosis through interaction with the Hec1 component of the Ndc80 complex. G2-specific depletion of Cdt1 arrests cells in late prometaphase owing to abnormally unstable kinetochore-microtubule (kMT) attachments and Mad1-dependent spindle-assembly-checkpoint activity. Cdt1 binds a unique loop extending from the rod domain of Hec1 that we show is also required for kMT attachment. Mutation of the loop domain prevents Cdt1 kinetochore localization and arrests cells in prometaphase. Super-resolution fluorescence microscopy indicates that Cdt1 binding to the Hec1 loop domain promotes a microtubule-dependent conformational change in the Ndc80 complex in vivo. These results support the conclusion that Cdt1 binding to Hec1 is essential for an extended Ndc80 configuration and stable kMT attachment.  相似文献   

3.
The Aurora kinase Ipl1p plays a crucial role in regulating kinetochore-microtubule attachments in budding yeast, but the underlying basis for this regulation is not known. To identify Ipl1p targets, we first purified 28 kinetochore proteins from yeast protein extracts. These studies identified five previously uncharacterized kinetochore proteins and defined two additional kinetochore subcomplexes. We then used mass spectrometry to identify 18 phosphorylation sites in 7 of these 28 proteins. Ten of these phosphorylation sites are targeted directly by Ipl1p, allowing us to identify a consensus phosphorylation site for an Aurora kinase. Our systematic mutational analysis of the Ipl1p phosphorylation sites demonstrated that the essential microtubule binding protein Dam1p is a key Ipl1p target for regulating kinetochore-microtubule attachments in vivo.  相似文献   

4.
Equal distribution of the genetic material during cell division relies on efficient congression of chromosomes to the metaphase plate. Prior to their alignment, the Dynein motor recruited to kinetochores transports a fraction of laterally-attached chromosomes along microtubules toward the spindle poles. By doing that, Dynein not only contributes to chromosome movements, but also prevents premature stabilization of end-on kinetochore-microtubule attachments. This is achieved by 2 parallel mechanisms: 1) Dynein-mediated poleward movement of chromosomes counteracts opposite polar-ejection forces (PEFs) on chromosome arms by the microtubule plus-end-directed motors chromokinesins. Otherwise, they could stabilize erroneous syntelic kinetochore-microtubule attachments and lead to the random ejection of chromosomes away from the spindle poles; and 2) By transporting chromosomes to the spindle poles, Dynein brings the former to the zone of highest Aurora A kinase activity, further destabilizing kinetochore-microtubule attachments. Thus, Dynein plays an important role in keeping chromosome segregation error-free by preventing premature stabilization of kinetochore-microtubule attachments near the spindle poles.  相似文献   

5.
Formation of stable kinetochore-microtubule attachments is essential for accurate chromosome segregation in human cells and depends on the NDC80 complex. We recently showed that Chmp4c, an endosomal sorting complex required for transport protein involved in membrane remodelling, localises to prometaphase kinetochores and promotes cold-stable kinetochore microtubules, faithful chromosome alignment and segregation. In the present study, we show that Chmp4c associates with the NDC80 components Hec1 and Nuf2 and is required for optimal NDC80 stability and Hec1-Nuf2 localisation to kinetochores in prometaphase. However, Chmp4c-depletion does not cause a gross disassembly of outer or inner kinetochore complexes. Conversely, Nuf2 is required for Chmp4c kinetochore targeting. Constitutive Chmp4c kinetochore tethering partially rescues cold-stable microtubule polymers in cells depleted of the endogenous Nuf2, showing that Chmp4c also contributes to kinetochore-microtubule stability independently of regulating Hec1 and Nuf2 localisation. Chmp4c interacts with tubulin in cell extracts, and binds and bundles microtubules in vitro through its highly basic N-terminal region (amino acids 1–77). Furthermore, the N-terminal region of Chmp4c is required for cold-stable kinetochore microtubules and efficient chromosome alignment. We propose that Chmp4c promotes stable kinetochore-microtubule attachments by regulating Hec1–Nuf2 localisation to kinetochores in prometaphase and by binding to spindle microtubules. These results identify Chmp4c as a novel protein that regulates kinetochore-microtubule interactions to promote accurate chromosome segregation in human cells.  相似文献   

6.
CLIP-170 is a microtubule 'plus end tracking' protein involved in several microtubule-dependent processes in interphase. At the onset of mitosis, CLIP-170 localizes to kinetochores, but at metaphase, it is no longer detectable at kinetochores. Although RNA interference (RNAi) experiments have suggested an essential role for CLIP-170 during mitosis, the molecular function of CLIP-170 in mitosis has not yet been revealed. Here, we used a combination of high-resolution microscopy and RNAi-mediated depletion to study the function of CLIP-170 in mitosis. We found that CLIP-170 dynamically localizes to the outer most part of unattached kinetochores and to the ends of growing microtubules. In addition, we provide evidence that a pool of CLIP-170 is transported along kinetochore-microtubules by the dynein/dynactin complex. Interference with CLIP-170 expression results in defective chromosome congression and diminished kinetochore-microtubule attachments, but does not detectibly affect microtubule dynamics or kinetochore-microtubule stability. Taken together, our results indicate that CLIP-170 facilitates the formation of kinetochore-microtubule attachments, possibly through direct capture of microtubules at the kinetochore.  相似文献   

7.
Chromosome segregation during cell division depends on stable attachment of kinetochores to spindle microtubules. Mitotic spindle formation and kinetochore–microtubule (K-MT) capture typically occur within minutes of nuclear envelope breakdown. In contrast, during meiosis I in mouse oocytes, formation of the acentrosomal bipolar spindle takes 3–4 h, and stabilization of K-MT attachments is delayed an additional 3–4 h. The mechanism responsible for this delay, which likely prevents stabilization of erroneous attachments during spindle formation, is unknown. Here we show that during meiosis I, attachments are regulated by CDK1 activity, which gradually increases through prometaphase and metaphase I. Partial reduction of CDK1 activity delayed formation of stable attachments, whereas a premature increase in CDK1 activity led to precocious formation of stable attachments and eventually lagging chromosomes at anaphase I. These results indicate that the slow increase in CDK1 activity in meiosis I acts as a timing mechanism to allow stable K-MT attachments only after bipolar spindle formation, thus preventing attachment errors.  相似文献   

8.
9.
The KMN network (named according to the acronym for KNL1, Mis12, and Ndc80) and the more recently identified Ska complex (Ska1-3) have been shown to mediate kinetochore (KT)-microtubule (MT) attachments. How these two complexes cooperate to achieve stable end-on attachments remains unknown. In this paper, we show that Aurora B negatively regulates the localization of the Ska complex to KTs and that recruitment of the Ska complex to KTs depends on the KMN network. We identified interactions between members of the KMN and Ska complexes and demonstrated that these interactions are regulated by Aurora B. Aurora B directly phosphorylated Ska1 and Ska3 in vitro, and expression of phosphomimetic mutants of Ska1 and Ska3 impaired Ska KT recruitment and formation of stable KT-MT fibers (K-fibers), disrupting mitotic progression. We propose that Aurora B phosphorylation antagonizes the interaction between the Ska complex and the KMN network, thereby controlling Ska recruitment to KTs and stabilization of KT-MT attachments.  相似文献   

10.
Faithful chromosome segregation is required for cell and organism viability and relies on both the mitotic checkpoint and the machinery that corrects kinetochore-microtubule (k-MT) attachment errors. Most solid tumors have aneuploid karyotypes and many missegregate chromosomes at high rates in a phenomenon called chromosomal instability (CIN). Mad2 is essential for mitotic checkpoint function and is frequently overexpressed in human tumors that are CIN. For unknown reasons, cells overexpressing Mad2 display high rates of lagging chromosomes. Here, we explore this phenomenon and show that k-MT attachments are hyperstabilized by Mad2 overexpression and that this undermines the efficiency of correction of k-MT attachment errors. Mad2 affects k-MT attachment stability independently of the mitotic checkpoint because k-MT attachments are unaltered upon Mad1 depletion and Mad2 overexpression hyperstabilizes k-MT attachments in Mad1-deficient cells. Mad2 mediates these effects with Cdc20 by altering the centromeric localization and activity of Aurora B kinase, a known regulator of k-MT attachment stability. These data reveal a new function for Mad2 to stabilize k-MT attachments independent of the checkpoint and explain why Mad2 overexpression increases chromosome missegregation to cause chromosomal instability in human tumors.  相似文献   

11.
The attachment of kinetochores to spindle microtubules (MTs) is essential for maintaining constant ploidy in eukaryotic cells. Here, biochemical and imaging data is presented demonstrating that the budding yeast CLIP-170 orthologue Bik1is a component of the kinetochore-MT binding interface. Strikingly, Bik1 is not required for viability in haploid cells, but becomes essential in polyploids. The ploidy-specific requirement for BIK1 enabled us to characterize BIK1 without eliminating nonhomologous genes, providing a new approach to circumventing the overlapping function that is a common feature of the cytoskeleton. In polyploid cells, Bik1 is required before anaphase to maintain kinetochore separation and therefore contributes to the force that opposes the elastic recoil of attached sister chromatids. The role of Bik1 in kinetochore separation appears to be independent of the role of Bik1 in regulating MT dynamics. The finding that a protein involved in kinetochore-MT attachment is required for the viability of polyploids has potential implications for cancer therapeutics.  相似文献   

12.
The spindle assembly checkpoint monitors the status of kinetochore-microtubule (K-MT) attachments and delays anaphase onset until full metaphase alignment is achieved. Recently, the role of spindle assembly checkpoint proteins was expanded with the discovery that BubR1 and Bub1 are implicated in the regulation of K-MT attachments. One unsolved question is whether Bub3, known to form cell cycle constitutive complexes with both BubR1 and Bub1, is also required for proper chromosome-to-spindle attachments. Using RNA interference and high-resolution microscopy, we analyzed K-MT interactions in Bub3-depleted cells and compared them to those in Bub1- or BubR1-depleted cells. We found that Bub3 is essential for the establishment of correct K-MT attachments. In contrast to BubR1 depletion, which severely compromises chromosome attachment and alignment, we found Bub3 and Bub1 depletions to produce defective K-MT attachments that, however, still account for significant chromosome congression. After Aurora B inhibition, alignment defects become severer in Bub3- and Bub1-depleted cells, while partially rescued in BubR1-depleted cells, suggesting that Bub3 and Bub1 depletions perturb K-MT attachments distinctly from BubR1. Interestingly, misaligned chromosomes in Bub3- and Bub1-depleted cells were found to be predominantly bound in a side-on configuration. We propose that Bub3 promotes the formation of stable end-on bipolar attachments.  相似文献   

13.
Ralph E  Boye E  Kearsey SE 《EMBO reports》2006,7(11):1134-1139
Cdt1 is an essential protein required for licensing of replication origins. Here, we show that in Schizosaccharomyces pombe, Cdt1 is proteolysed in M and G1 phases in response to DNA damage and that this mechanism seems to be conserved from yeast to Metazoa. This degradation does not require Rad3 and Cds1, indicating that it is independent of classic DNA damage and replication checkpoint pathways. Damage-induced degradation of Cdt1 is dependent on Cdt2 and Ddb1, which are components of a Cul4 ubiquitin ligase. We also show that Cdt2 and Ddb1 are needed for cell-cycle changes in Cdt1 levels in the absence of DNA damage. Cdt2 and Ddb1 have been shown to be involved in the degradation of the Spd1 inhibitor of ribonucleotide reductase after DNA damage, and we speculate that Cdt1 downregulation might contribute to genome stability by reducing demand on dNTP pools during DNA repair.  相似文献   

14.
DNA replication is controlled by the stepwise assembly of a pre-replicative complex and the replication apparatus. Cdt1 is a novel component of the pre-replicative complex and plays a role in loading the minichromosome maintenance (MCM) 2-7 complex onto chromatin. Cdt1 activity is inhibited by geminin, which is essential for the G(2)/M transition in metazoan cells. To understand the molecular basis of the Cdt1-geminin regulatory mechanism in mammalian cells, we cloned and expressed the mouse Cdt1 homologue cDNA in bacterial cells and purified mouse Cdt1 to near homogeneity. We found by yeast two-hybrid analysis that mouse Cdt1 associates with geminin, MCM6, and origin recognition complex 2. MCM6 interacts with the Cdt1 carboxyl-terminal region (amino acids 407-477), which is conserved among eukaryotes, whereas geminin associates with the Cdt1 central region (amino acids 177-380), which is conserved only in metazoans. In addition, we found that Cdt1 can bind DNA in a sequence-, strand-, and conformation-independent manner. The Cdt1 DNA binding domain overlaps with the geminin binding domain, and the binding of Cdt1 to DNA is inhibited by geminin. Taken together, we have defined structural domains and novel biochemical properties for mouse Cdt1 that suggest that Cdt1 behaves as an intrinsic DNA binding factor in the pre-replicative complex.  相似文献   

15.
Kinetochores are multicomponent assemblies that connect chromosomal centromeres to mitotic-spindle microtubules. The Ndc80 complex is an essential core element of kinetochores, conserved from yeast to humans. It is a rod-like assembly of four proteins- Ndc80p (HEC1 in humans), Nuf2p, Spc24p and Spc25p. We describe here the crystal structure of the most conserved region of HEC1, which lies at one end of the rod and near the N terminus of the polypeptide chain. It folds into a calponin-homology domain, resembling the microtubule-binding domain of the plus-end-associated protein EB1. We show that an Ndc80p-Nuf2p heterodimer binds microtubules in vitro. The less conserved, N-terminal segment of Ndc80p contributes to the interaction and may be a crucial regulatory element. We propose that the Ndc80 complex forms a direct link between kinetochore core components and spindle microtubules.  相似文献   

16.
Defects in kinetochore-microtubule (KT-MT) attachment and the spindle assembly checkpoint (SAC) during cell division are strongly associated with chromosomal instability (CIN). CIN has been linked to carcinogenesis, metastasis, poor prognosis and resistance to cancer therapy. We previously reported that the DAB2IP is a tumor suppressor, and that loss of DAB2IP is often detected in advanced prostate cancer (PCa) and is indicative of poor prognosis. Here, we report that the loss of DAB2IP results in impaired KT-MT attachment, compromised SAC and aberrant chromosomal segregation. We discovered that DAB2IP directly interacts with Plk1 and its loss inhibits Plk1 kinase activity, thereby impairing Plk1-mediated BubR1 phosphorylation. Loss of DAB2IP decreases the localization of BubR1 at the kinetochore during mitosis progression. In addition, the reconstitution of DAB2IP enhances the sensitivity of PCa cells to microtubule stabilizing drugs (paclitaxel, docetaxel) and Plk1 inhibitor (BI2536). Our findings demonstrate a novel function of DAB2IP in the maintenance of KT-MT structure and SAC regulation during mitosis which is essential for chromosomal stability.  相似文献   

17.
Kinetochore attachment to spindle microtubule plus-ends is necessary for accurate chromosome segregation during cell division in all eukaryotes. The centromeric DNA of each chromosome is linked to microtubule plus-ends by eight structural-protein complexes. Knowing the copy number of each of these complexes at one kinetochore-microtubule attachment site is necessary to understand the molecular architecture of the complex, and to elucidate the mechanisms underlying kinetochore function. We have counted, with molecular accuracy, the number of structural protein complexes in a single kinetochore-microtubule attachment using quantitative fluorescence microscopy of GFP-tagged kinetochore proteins in the budding yeast Saccharomyces cerevisiae. We find that relative to the two Cse4p molecules in the centromeric histone, the copy number ranges from one or two for inner kinetochore proteins such as Mif2p, to 16 for the DAM-DASH complex at the kinetochore-microtubule interface. These counts allow us to visualize the overall arrangement of a kinetochore-microtubule attachment. As most of the budding yeast kinetochore proteins have homologues in higher eukaryotes, including humans, this molecular arrangement is likely to be replicated in more complex kinetochores that have multiple microtubule attachments.  相似文献   

18.
Cdt1, a protein essential in G1 for licensing of origins for DNA replication, is inhibited in S-phase, both by binding to geminin and degradation by proteasomes. Cdt1 is also degraded after DNA damage to stop licensing of new origins until after DNA repair. Phosphorylation of Cdt1 by cyclin-dependent kinases promotes its binding to SCF-Skp2 E3 ubiquitin ligase, but the Cdk2/Skp2-mediated pathway is not essential for the degradation of Cdt1. Here we show that the N terminus of Cdt1 contains a second degradation signal that is active after DNA damage and in S-phase and is dependent on the interaction of Cdt1 with proliferating cell nuclear antigen (PCNA) through a PCNA binding motif. The degradation involves N-terminal ubiquitination and requires Cul4 and Ddb1 proteins, components of an E3 ubiquitin ligase implicated in protein degradation after DNA damage. Therefore PCNA, the matchmaker for many proteins involved in DNA and chromatin metabolism, also serves to promote the targeted degradation of associated proteins in S-phase or after DNA damage.  相似文献   

19.
20.
Mitosis is an orchestration of dynamic interaction between chromosomes and spindle microtubules by which genomic materials are equally distributed into two daughter cells. Previous studies showed that CENP-U is a constitutive centromere component essential for proper chromosome segregation. However, the precise molecular mechanism has remained elusive. Here, we identified CENP-U as a novel interacting partner of Hec1, an evolutionarily conserved kinetochore core component essential for chromosome plasticity. Suppression of CENP-U by shRNA resulted in mitotic defects with an impaired kinetochore-microtubule attachment. Interestingly, CENP-U not only binds microtubules directly but also displays a cooperative microtubule binding activity with Hec1 in vitro. Furthermore, we showed that CENP-U is a substrate of Aurora-B. Importantly, phosphorylation of CENP-U leads to reduced kinetochore-microtubule interaction, which contributes to the error-correcting function of Aurora-B. Taken together, our results indicate that CENP-U is a novel microtubule binding protein and plays an important role in kinetochore-microtubule attachment through its interaction with Hec1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号