首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The myeloproliferative sarcoma virus (MPSV) induces extensive hematopoietic changes, including spleen foci in adult mice, and transforms fibroblasts in vitro. NRK nonproducer cell lines of MPSV and ts temperature-sensitive mutants were analyzed by restriction enzyme digestion and Southern blotting. EcoRI fragments containing the proviral DNAs of MPSV and two temperature-sensitive mutants and rat cellular sequences homologous to c-mos were molecularly cloned. By comparing restriction enzyme cleavage sites, it was shown that the MPSV genome consists only of sequences related either to Moloney murine leukemia virus or to the c-mos mouse oncogenic sequences. Two regions of fragment heterogeneity were observed: (i) in the defective pol gene, where MPSV and the two cloned temperature-sensitive mutants were different from Moloney murine sarcoma virus and from each other, although MPSV wild-type retained more of the pol gene than any of the Moloney murine sarcoma virus isolates; (ii) in the area 3' to the mos gene, which was identical in MPSV and its temperature-sensitive mutants but different from other Moloney murine sarcoma virus variants. Transfection of cloned MPSV DNA in RAT4 cells and virus rescue on infection with Friend murine leukemia virus yielded MPSV which transformed fibroblasts in vitro and also induced spleen foci in adult mice, thus proving that both properties are coded by the same viral genome.  相似文献   

2.
3.
The nucleotide sequence of the Moloney murine sarcoma virus strain HT-1 (HT1MSV) mos gene differs from that of the cellular mos gene in three positions, but these are silent changes, and the amino acid sequence of the v-mos and c-mos open reading frames are identical. We have overproduced the mos HT1MSV (equivalent to c-mos) in Escherichia coli under the control of phage lambda promoter (pL). The E. coli p40mos protein thus obtained was partially purified and examined for several biochemical activities. We show that the p40mos binds ATP analog p-fluorosulfonylbenzoyladenosine and exhibits ATPase activity.  相似文献   

4.
5.
The myeloproliferative sarcoma virus (MPSV) derived from Moloney sarcoma virus (MSV-Mol) is a unique sarcoma virus which causes expansion of the hematopoietic stem cell compartment as well as the erythroid and myeloid cell lineages. MPSV also induces spleen focus formation in adult mice as do Friend and Rauscher viruses. Analysis of the MPSV genome on methyl mercury gels showed that the genome size is 7.0 kilobases, which is larger than the defective genome of any known MSV-Mol isolate. Hybridization analysis with specific cDNA probes showed that MPSV is a modified sarcoma virus with no sequences in the unique region of the defective sarcoma genome related to unique Friend virus sequences. The only viral sequences in the defective genome other than helper virus-related sequences are derived from the Moloney sarcoma virus genome with no new cellular sequences added. There was no evidence for induction of xenotropic virus sequences in MPSV-infected spleens of DBA/2J mice, indicating that spleen focus formation can be obtained by different mechanisms.  相似文献   

6.
The nucleotide sequences of the Gardner-Arnstein feline sarcoma virus (FeSV) long terminal repeat and the adjacent leader sequences 5' to the viral gag gene were determined. These were compared with homologous portions of Synder-Theilen FeSV and with previously published sequences for Moloney murine sarcoma virus and simian sarcoma virus proviral DNA. More than 75% of the residues in the FeSV R and U5 regions were homologous to sequences within the same regions of the other viral long terminal repeats. Unexpectedly, alignment of the FeSV sequences with those of the Moloney murine sarcoma and simian sarcoma viruses showed similar extents of homology within U3. The homologous U3 regions included the inverted repeats, a single set of putative enhancer sequences, corresponding to a "72-base-pair" repeat, and sequences, including the CAT and TATA boxes, characteristic of eucaryotic promotors. The 5' leader sequences of both FeSV strains included a binding site for prolyl tRNA and a putative splice donor sequence. In addition, the FeSV leader contained a long open reading frame which was adjacent to and in phase with the ATG codon at the 5' end of the FeSV gag gene. The open reading frame could code for a signal peptide of about 7.4 kilodaltons. Our results support the concept that the virogenic portions of both FeSV and simian sarcoma virus were ancestrally derived from viruses of rodent origin, with conservation of regulatory sequences as well as the viral structural genes.  相似文献   

7.
The v-mosm1 nucleotide sequence codes for a protein that is 376 amino acids long. Although the N-terminus is homologous with that of the v-mos124 protein, the C-terminus is substantially different from the C-termini of all other examined mos proteins, suggesting that this region is nonessential and perhaps cleaved. Overall, v-mosm1 has greater homology with c-mos than does v-mos124, but mutually exclusive differences between c-mos and each of the v-mos genes preclude linear descent and suggest a common ancestral murine sarcoma virus.  相似文献   

8.
9.
ts110 Moloney murine sarcoma virus (Mo-MuSV)-nonproductively infected cells (6m2) have a transformed phenotype at 28 to 33 degrees C and a normal phenotype at 39 degrees C. At temperatures permissive for transformation, 6m2 cells contain P58gag produced from the 4.0-kilobase (kb) viral RNA genome and P85gag-mos translated from a 3.5-kb spliced mRNA. At 39 degrees C, only the 4.0-kb RNA and its product P58gag are detected. Two temperature-sensitive defects have been observed in ts110-infected 6m2 cells: (i) the splicing of the 4.0-kb RNA to the 3.5-kb RNA; and (ii) the thermolability of P85gag-mos and its kinase activity relative to the wild-type revertant protein, termed P100gag-mos (R.B. Arlinghaus, J. Gen. Virol. 66:1845-1853, 1985). In the present study, we examined the mos gene products of two cell lines (204-2F6 and 204-2F8) obtained by infection of normal rat kidney cells with ts110 Mo-MuSV as a simian sarcoma-associated virus pseudotype to see whether the temperature-sensitive splicing defect could be transferred by viral infection. Southern blot analysis of these two cell lines showed that viral DNAs containing restriction fragments from cellular DNA are different from those in 6m2 cells, indicating that 204-2F6 and 204-2F8 cells have different ts110 provirus integration sites from those of 6m2 cells. Northern blots, S1 mapping analyses, and immunoprecipitation experiments showed unequivocally that the splicing defect of ts110 Mo-MuSV is virus encoded and is independent of host cell factors.  相似文献   

10.
The myeloproliferative sarcoma virus (MPSV) is a mos-oncogenic retrovirus which induces an acute myeloproliferative disease in adult mice. The isolation and molecular cloning of two mutants of MPSV temperature sensitive (ts) for mos transformation (Kollek et al., J. Virol. 50:717-724, 1984) have been described previously. In this report, we describe the biological activity of these clones, the molecular basis of the ts lesion of one clone, and the construction of a selectable vector based on the MPSV ts genome. Both molecular clones, ts159 and ts124, proved to have retained the ts phenotype, the former being tighter for the induction and maintenance of the transformed phenotype. A single transition (G----A) at position 1888 in the mos coding region, resulting in the change of Gly to Arg at position 307, was responsible for the ts phenotype of clone ts159. Substitution of sequences carrying this mutation with the corresponding sequences of the wild-type virus generated a virus that was ts for transformation. Insertion of the dominant selectable marker gene for geneticin resistance (neor) into ts159 did not disrupt mos expression or its ts phenotype. neor-ts159 facilitates the study of mos action by allowing the selection of infected cells at the nonpermissive temperature before mos transformation has been induced. Furthermore, infected cells which show no obvious phenotype alteration due to mos expression can be identified by their Neor phenotype.  相似文献   

11.
12.
Different variants of Moloney murine sarcoma virus (MSV) were examined by nucleotide sequencing to compare the junctions between the acquired cellular sequence, v-mos, and the adjacent virus-derived sequences. These variants included 124-MSV, m1-MSV, and HT1-MSV and also the purportedly independent isolate Gazdar MSV. These four strains have an identical 5' junction between the murine leukemia virus env gene and the v-mos gene. This junction lies within the sixth codon of the chimeric env-mos coding region that encodes the transforming gene product. In contrast, at the 3' junction between the v-mos gene and the murine leukemia virus env gene, the three variants examined here were all different. A small deletion was found in the COOH-terminal portion of the m1-MSV env-mos coding region, indicating that the COOH terminus of this transforming gene product must be different from that of 124-MSV or HT1-MSV. The data presented here are consistent with the thesis that a virus closely related to HT1-MSV was the primordial Moloney MSV, and that all other related strains evolved from it by deletion or rearrangement. The variability observed in the Moloney MSV family is discussed in terms of possible mechanisms for the initial capture of mos sequences by the parental retrovirus and also in comparison with other transforming retrovirus families, such as Abelson murine leukemia virus and Rous sarcoma virus.  相似文献   

13.
Hardy-Zuckerman 2 feline sarcoma virus (HZ2-FeSV), isolated from a multicentric feline fibrosarcoma is a replication-defective acute transforming feline retrovirus which originated by transduction of feline c-abl sequences with feline leukemia virus (FeLV) and is known to encode a 110-kilodalton gag-abl fusion protein with tyrosine-specific protein kinase activity (P. Besmer, W. D. Hardy, E. E. Zuckerman, P. J. Bergold, L. Lederman, and H. W. Snyder, Nature (London) 303:825-828, 1983). The nucleotide sequence of the abl segment in the HZ2-FeSV genome was determined and compared with the murine and human v-abl and c-abl sequences. The predicted transforming protein consists of 344 amino acids (aa) of FeLV gag origin, 439 aa of abl origin, and at least 200 aa of FeLV pol origin (p110gag-abl-pol). The 1,317-base-pair HZ2-FeSV v-abl segment (fv-abl) corresponds to 5' abl sequences which include the region known to specify the protein kinase domain. The 5' 189 base pairs of fv-abl correspond to 5' c-abl sequences not contained in Abelson murine leukemia virus (MuLV) v-abl. The mouse c-abl exon which contains these segments was identified, and its nucleotide sequence was determined. Comparison of the predicted amino acid sequence of fv-abl with those of Abelson MuLV v-abl and c-abl revealed five aa differences. The 5' junction between FeLV and abl was found to involve a preferred region in FeLV gag p30 (P. Besmer, J. E. Murphy, P. C. George, F. H. Qiu, P. J. Bergold, L. Lederman, H. W. Snyder, D. Brodeur, E. E. Zuckerman, and W. D. Hardy, Nature (London) 320:415-421, 1986). A six-base homology exists at the recombination site between the parental FeLV and the c-abl sequences. The 3' junction between fv-abl and FeLV pol predicts an in-frame fusion of fv-abl and FeLV pol. A transformed cell line containing a truncated gag-abl-pol protein, p85, that lacks most of the FeLV pol sequences was obtained by transfection of NIH 3T3 mouse cells. This result implies that the pol sequences of the p110gag-abl-pol protein are dispensable for fibroblast transformation. To assess whether the fv-abl segment specifies the unique biological properties of HZ2-FeSV, we constructed a Moloney MuLV-based version of HZ2-FeSV, Mo-MuLV(fv-abl), in which the fv-abl sequences were contained in a genetic context similar to that in HZ2-FeSV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
J Papkoff  E A Nigg  T Hunter 《Cell》1983,33(1):161-172
The transforming gene, v-mos, of Moloney murine sarcoma virus (M-MuSV) encodes a 37,000-dalton phosphoprotein, p37mos. Since the biochemical function of this protein is unknown, we have determined the subcellular location of p37mos in M-MuSV 124-transformed cells. Using two different methods of cell lysis and fractionation, we found that newly synthesized as well as mature p37mos is a soluble cytoplasmic protein. In agreement with these results, immunofluorescent staining of cells acutely infected with M-MuSV 124, using an antiserum directed against a synthetic v-mos peptide, produced a diffuse cytoplasmic pattern. Gel filtration experiments and glycerol gradient sedimentation analysis suggest that the bulk of p37mos exists as a monomer and is not involved in a specific association with other cellular proteins. These properties of p37mos are different from those of other characterized retroviral transforming proteins.  相似文献   

15.
A biologically active molecular clone of BALB/Moloney mink cell focus-forming (Mo-MCF) proviral DNA has been reconstructed in vitro. It contains the 5' half of BALB/Moloney murine leukemia virus (Mo-MuLV) DNA and the 3' half of BALB/Mo-MCF DNA. The complete nucleotide sequence of the env gene and the 3' long terminal repeat (LTR) of the cloned Mo-MCF DNA has been determined and compared with the sequence of the corresponding region of parental Mo-MuLV DNA. The substitution in the Mo-MCF DNA encompasses 1,159 base pairs, beginning in the carboxyl terminus of the pol gene and extending to the middle of the env gene. The Mo-MCF env gene product is predicted to be 29 amino acids shorter than the parental Mo-MuLV env gene product. The portion of the env gene encoding the p15E peptide is identical in both viral DNAs. There is an additional A residue in the Mo-MCF viral DNA in a region just preceding the 3' LTR. The nucleotide sequence of the 3' LTR of Mo-MCF DNA is similar to that of the 5' LTR of BALB/Mo-MuLV DNA with the exception of two single base substitutions. We conclude that the sequence substitution in the env gene is responsible for the dual-tropic properties of Mo-MCF viruses.  相似文献   

16.
17.
Extrachromosomal DNA obtained from mink cells acutely infected with the Snyder-Theilen (ST) strain of feline sarcoma virus (feline leukemia virus) [FeSV(FeLV)] was fractionated electrophoretically, and samples enriched for FeLV and FeSV linear intermediates were digested with EcoRI and cloned in lambda phage. Hybrid phages were isolated containing either FeSV or FeLV DNA "inserts" and were characterized by restriction enzyme analysis, R-looping with purified 26 to 32S viral RNA, and heteroduplex formation. The recombinant phages (designated lambda FeSV and lambda FeLV) contain all of the genetic information represented in FeSV and FeLV RNA genomes but lack one extended terminally redundant sequence of 750 bases which appears once at each end of parental linear DNA intermediates. Restriction enzyme and heteroduplex analyses confirmed that sequences unique to FeSV (src sequences) are located at the center of the FeSV genome and are approximately 1.5 kilobase pairs in length. With respect to the 5'-3' orientation of genes in viral RNA, the order of genes in the FeSV genome is 5'-gag-src-env-c region-3'; only 0.9 kilobase pairs of gag and 0.6 kilobase pairs of env-derived FeLV sequences are represented in ST FeSV. Heteroduplex analyses between lambda FeSV or lambda FeLV DNA and Moloney murine sarcoma virus DNA (strain m1) were performed under conditions of reduced stringency to demonstrate limited regions of base pair homology. Two such regions were identified: the first occurs at the extreme 5' end of the leukemia and both sarcoma viral genomes, whereas the second corresponds to a 5' segment of leukemia virus "env" sequences conserved in both sarcoma viruses. The latter sequences are localized at the 3' end of FeSV src and at the 5' end of murine sarcoma virus src and could possibly correspond to regions of helper virus genomes that are required for retroviral transforming functions.  相似文献   

18.
19.
The Harvey murine sarcoma virus genome contains two rat-derived sets of genetic information recombined with the Moloney mouse leukemia virus. The rat sequences represent a ras oncogene and a rat VL30 element. The VL30 sequences have several discrete regions of similarity with retroviral sequences which were detected by searching a protein database for similarities with predicted polypeptide sequences from the VL30 regions. On the 5' side, the most similar sequences were those of feline sarcoma viruses; on the 3' side, murine leukemia viruses were the most similar. Some of the regions of similarity could also be detected directly by searching a nucleic acid sequence database with the viral DNA sequences. The most extensive region of similarity was that which corresponded to the endonuclease in the pol gene of a murine leukemia virus. The majority of the rat-derived sequences present in the Harvey sarcoma virus genome can now be attributed exclusively to ras or retrovirus- or retrotransposon-related sequences.  相似文献   

20.
A series of recombinant molecules were constructed which direct the expression of the easily assayed gene chloramphenicol acetyltransferase. We have used these recombinants to show that the 73/72-base-pair tandem repeat unit from the Moloney murine sarcoma virus long terminal repeat shares a number of properties with the prototypic enhancer element, the simian virus 40 72-base-pair repeat. Specifically, the Moloney murine sarcoma virus sequence significantly enhances the level of gene expression at both 5' and 3' locations and in either orientation relative to the test gene. It is able to enhance gene activity both from its own promoter and from a heterologous (simian virus 40) promoter. The 73/72-base-pair subunits of the Moloney murine sarcoma virus enhancer differ in sequence by four nucleotides and also in the strength of their enhancer function. The promoter distal A repeat is at least three times as active as the promoter proximal B repeat in enhancing chloramphenicol acetyltransferase expression. Results of these studies also show that the enhancer sequence alone is unable to induce gene activity but requires other promoter elements, including a proximal GC-rich sequence and the Goldberg-Hogness box.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号