首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stimulation of phospholipase C (PLC) by G(q)-coupled receptors such as the M(3) muscarinic acetylcholine receptor (mAChR) is caused by direct activation of PLC-beta enzymes by Galpha(q) proteins. We have recently shown that G(s)-coupled receptors can stimulate PLC-epsilon, apparently via formation of cyclic AMP and activation of the Ras-related GTPase Rap2B. Here we report that PLC stimulation by the M(3) mAChR expressed in HEK-293 cells also involves, in part, similar mechanisms. M(3) mAChR-mediated PLC stimulation and [Ca(2+)](i) increase were reduced by 2',5'-dideoxyadenosine (dd-Ado), a direct adenylyl cyclase inhibitor. On the other hand, overexpression of Galpha(s) or Epac1, a cyclic AMP-regulated guanine nucleotide exchange factor for Rap GTPases, enhanced M(3) mAChR-mediated PLC stimulation. Inactivation of Ras-related GTPases with clostridial toxins suppressed the M(3) mAChR responses. The inhibitory toxin effects were mimicked by expression of inactive Rap2B, but not of other inactive GTPases (Rac1, Ras, RalA, Rap1A, and Rap2A). Activation of the M(3) mAChR induced GTP loading of Rap2B, an effect strongly enhanced by overexpression of Galpha(s) and inhibited by dd-Ado. Overexpression of PLC-epsilon and PLC-beta1, but not PLC-gamma1 or PLC-delta1, enhanced M(3) mAChR-mediated PLC stimulation and [Ca(2+)](i) increase. In contrast, expression of a catalytically inactive PLC-epsilon mutant reduced PLC stimulation by the M(3) mAChR and abrogated the potentiating effect of Galpha(s). In conclusion, our findings suggest that PLC stimulation by the M(3) mAChR is a composite action of PLC-beta1 stimulation by Galpha(q) and stimulation of PLC-epsilon apparently mediated by G(s)-dependent cyclic AMP formation and subsequent activation of Rap2B.  相似文献   

2.
We recently reported that several Gs-coupled receptors stimulate phospholipase C (PLC)-epsilon via increased formation of cyclic AMP and subsequent activation of the small GTPase Rap2B by the cyclic AMP-activated exchange factor Epac1. Here we show by studies in HEK-293 and N1E-115 neuroblastoma cells that this stimulation induced by Gs-coupled receptors or the direct adenylyl cyclase activator, forskolin, is potently inhibited by Gi-coupled receptors, known to inhibit cyclic AMP formation. PLC inhibition by the overexpressed M2 muscarinic receptor and the endogenously expressed sphingosine-1-phosphate and delta-opioid receptors was fully pertussis toxin-sensitive and accompanied by a reduction in Rap2B activation induced by Gs-coupled receptors. In contrast, Rap2B activation and PLC stimulation induced by membrane-permeable cyclic AMP analogues, including an Epac-specific activator, or PLC stimulation caused by constitutively active Rap2B were not affected by the Gi-coupled receptors. In summary, our data indicate that Gi-coupled receptors can inhibit PLC-epsilon, most likely by suppressing formation of cyclic AMP required for Epac-mediated Rap2B activation.  相似文献   

3.
Activation of stably expressed M(2) and M(3) muscarinic acetylcholine receptors (mAChRs) as well as of endogenously expressed lysophosphatidic acid and purinergic receptors in HEK-293 cells can induce a long lasting potentiation of phospholipase C (PLC) stimulation by these and other G protein-coupled receptors (GPCRs). Here, we report that GPCRs can induce an up-regulation of PLC stimulation by receptor tyrosine kinases (RTKs) as well and provide essential mechanistic characteristics of this sensitization process. Pretreatment of HEK-293 cells for 2 min with carbachol, a mAChR agonist, lysophosphatidic acid, or ATP, followed by agonist washout, strongly increased (by 2-3-fold) maximal PLC stimulation (measured >/=40 min later) by epidermal growth factor and platelet-derived growth factor, but not insulin, and largely enhanced PLC sensitivity to these RTK agonists. The up-regulation of RTK-induced PLC stimulation was cycloheximide-insensitive and was observed for up to approximately 90 min after removal of the GPCR agonist. Sensitization of receptor-induced PLC stimulation caused by prior M(2) mAChR activation was fully prevented by pertussis toxin and strongly reduced by expression of Gbetagamma scavengers. Furthermore, inhibition of conventional protein kinase C (PKC) isoenzymes and chelation of intracellular Ca(2+) suppressed the sensitization process, while overexpression of PKC-alpha, but not PKC-betaI, further enhanced the M(2) mAChR-induced sensitization of PLC stimulation. None of these treatments affected acute PLC stimulation by either GPCR or RTK agonists. Taken together, short term activation of GPCRs can induce a strong and long lasting sensitization of PLC stimulation by RTKs, a process apparently involving G(i)-derived Gbetagammas as well as increases in intracellular Ca(2+) and activation of a PKC isoenzyme, most likely PKC-alpha.  相似文献   

4.
5.
6.
Based on the finding that G protein-coupled receptors (GPCRs) can induce Ca2+ mobilization, apparently independent of the phospholipase C (PLC)/inositol-1,4,5-trisphosphate (IP3) pathway, we investigated whether sphingosine kinase, which generates sphingosine-1-phosphate (SPP), is involved in calcium signaling by mAChR and other GPCRs. Inhibition of sphingosine kinase by DL-threo-dihydrosphingosine and N,/N-dimethylsphingosine markedly inhibited [Ca2+]i increases elicited by M2 and M3 mAChRs in HEK-293 cells without affecting PLC activation. Activation of M2 and M3 mAChR rapidly and transiently stimulated production of SPP. Furthermore, microinjection of SPP into HEK-293 cells induced rapid and transient Ca2+ mobilization. Pretreatment of HEK-293 cells with the calcium chelator BAPTA/AM fully blocked mAChR-induced SPP production. On the other hand, incubation of HEK-293 cells with calcium ionophores activated SPP production. Similar findings were obtained for formyl peptide and P2Y2 purinergic receptors in HL-60 cells. On the basis of these studies we propose, that following initial IP3 production by receptor-mediated PLC activation, a local discrete increase in [Ca2+]i induces sphingosine kinase stimulation, which ultimately leads to full calcium mobilization. Thus, sphingosine kinase activation most likely represents an amplification system for calcium signaling by mAChRs and other GPCRs.  相似文献   

7.
Activation of phospholipase C-beta (PLC-beta) by G protein-coupled receptors typically results in rapid but transient second messenger generation. Although PLC-beta deactivation may contribute to the transient nature of this response, the mechanisms governing PLC-beta deactivation are poorly characterized. We investigated the involvement of protein kinase C (PKC) in the termination of PLC-beta activation induced by endogenous P2Y(2) purinergic receptors and transfected M(3) muscarinic acetylcholine receptors (mAChR) in Chinese hamster ovary cells. Activation of P2Y(2) receptors causes Galpha(q/11) to associate with PLC-beta3, whereas M(3) mAChR activation causes Galpha(q/11) to associate with both PLC-beta1 and PLC-beta3 in these cells. Phosphorylation of PLC-beta3, but not PLC-beta1, is induced by activating either P2Y(2) receptors or M(3) mAChR. We demonstrate that PKC rather than protein kinase A mediates the G protein-coupled receptor-induced phosphorylation of PLC-beta3. The PKC-mediated phosphorylation of PLC-beta3 diminishes the interaction of Galpha(q/11) with PLC-beta3, thereby contributing to the termination PLC-beta3 activity. These findings indicate that the distinct temporal profiles of PLC activation by P2Y(2) receptors and mAChR may arise from the differential activation of PLC-beta1 and PLC-beta3 by the receptors, coupled with a selective PKC-mediated negative feedback mechanism that targets PLC-beta3 but not PLC-beta1.  相似文献   

8.
Most G protein-coupled receptors (GPCRs), including the M(1) muscarinic acetylcholine receptor (mAChR), internalize in clathrin-coated vesicles, a process that requires dynamin GTPase. The observation that some GPCRs like the M(2) mAChR and the angiotensin AT(1A) receptor (AT(1A)R) internalize irrespective of expression of dominant-negative K44A dynamin has led to the proposal that internalization of these GPCRs is dynamin-independent. Here, we report that, contrary to what is postulated, internalization of M(2) mAChR and AT(1A)R in HEK-293 cells is dynamin-dependent. Expression of N272 dynamin, which lacks the GTP-binding domain, or K535M dynamin, which is not stimulatable by phosphatidylinositol 4, 5-bisphosphate, strongly inhibits internalization of M(1) and M(2) mAChRs and AT(1A)Rs. Expression of kinase-defective K298M c-Src or Y231F,Y597F dynamin (which cannot be phosphorylated by c-Src) reduces M(1) mAChR internalization. Similarly, c-Src inhibitor PP1 as well as the generic tyrosine kinase inhibitor genistein strongly inhibit M(1) mAChR internalization. In contrast, M(2) mAChR internalization is not (or is only slightly) reduced by expression of these constructs or treatment with PP1 or genistein. Thus, dynamin GTPases are not only essential for M(1) mAChR but also for M(2) mAChR and AT(1A)R internalization in HEK-293 cells. Our findings also indicate that dynamin GTPases are differentially regulated by c-Src-mediated tyrosine phosphorylation.  相似文献   

9.
Crk activation of JNK via C3G and R-Ras   总被引:3,自引:0,他引:3  
  相似文献   

10.
Toll-like receptors (TLRs) that recognize pathogen associated molecular patterns and chemoattractant receptors (CKRs) that orchestrate leukocyte migration to infected tissue are two arms of host innate immunity. Although TLR signaling induces synthesis and secretion of proinflammatory cytokines and chemokines, which recruit leukocytes, many studies have reported the paradoxical observation that TLR stimulation inhibits leukocyte chemotaxis in vitro and impairs their recruitment to tissues during sepsis. There is consensus that physical loss of chemokine receptor (CKR) at the RNA or protein level or receptor usage switching are the mechanisms underlying this effect. We show here that a brief (<15 min) stimulation with LPS (lipopolysaccharide) at ~0.2 ng/ml inhibited chemotactic response from CCR2, CXCR4 and FPR receptors in monocytes without downmodulation of receptors. A 3 min LPS pre-treatment abolished the polarized accumulation of F-actin, integrins and PIP(3) (phosphatidylinositol-3,4,5-trisphosphate) in response to chemokines in monocytes, but not in polymorphonuclear neutrophils (PMNs). If chemoattractants were added before or simultaneously with LPS, chemotactic polarization was preserved. LPS did not alter the initial G-protein signaling, or endocytosis kinetics of agonist-occupied chemoattractant receptors (CKRs). The chemotaxis arrest did not result from downmodulation of receptors or from inordinate increase in adhesion. LPS induced rapid p38 MAPK activation, global redistribution of activated Rap1 (Ras-proximate-1 or Ras-related protein 1) GTPase and Rap1GEF (guanylate exchange factor) Epac1 (exchange proteins activated by cyclic AMP) and disruption of intracellular gradient. Co-inhibition of p38 MAPK and Rap1 GTPase reversed the LPS induced breakdown of chemotaxis suggesting that LPS effect requires the combined function of p38 MAPK and Rap1 GTPase.  相似文献   

11.
Bünemann M  Hosey MM 《Life sciences》2001,68(22-23):2525-2533
The M2 muscarinic acetylcholine receptor (mAChR) activates Gi protein coupled pathways, such as stimulation of G-protein activated inwardly rectifying K channels (GIRKs). Here we report a novel heterologous desensitization of these GIRK currents, which appeared to be specifically induced by M2/M4 mAChR stimulation, but not via adenosine (Ado) and alpha2-adrenergic receptors (AR). This heterologous desensitization reflected an inhibition of the GIRK signalling pathway downstream of G-protein activation. It was mediated in a membrane-delimited fashion via a PTX insensitive GTP dependent pathway and could be competed with exogenous Gbetagamma. The activation of M3 mAChR/Gq coupled receptors potently inhibited GIRK currents similar as M2 mAChR. By monitoring simultaneously the response of A1 adenosine receptor (AdoR) activation on N-type Ca2+ channels and GIRK channels, the stimulation of M3 mAChR was found to cause an inhibition of the Ado response in both effector systems, suggesting that the inhibition occurred at the level of the G-protein common to both effectors. These results indicated that Gq proteins inhibit pathways that are commonly regulated by Gbetagamma proteins.  相似文献   

12.
13.
Wu EH  Wong YH 《Cellular signalling》2006,18(3):285-293
Survival or death of neurons during development is mediated by the integration of a diverse array of signal transduction cascades that are controlled by the availability and acquisition of neurotrophic factors and agonists acting at G protein-coupled receptors (GPCRs). Recent studies have demonstrated that GPCRs can modulate signals elicited by receptor tyrosine kinases (RTK) and vice versa. Here, we examined the activity of pro-survival Akt kinase, in response to stimulation by muscarinic acetylcholine receptors (mAChRs) and co-activation with the nerve growth factor (NGF) receptor in PC12 cells endogenously expressing Gi-coupled M4 mAChR and Gq-coupled M1 and M5 mAChRs. Western blotting analysis using a phosphospecific anti-Akt antibody revealed a dose- and time-dependent increase in Akt phosphorylation in cells stimulated with mAChR specific agonist carbachol (CCh). Co-stimulation with CCh and NGF resulted in augmentation of Akt activity in a pertussis toxin (PTX)-sensitive manner, suggesting that M4 mAChR, but not M1 and M5 mAChRs, was associated with this synergistic Akt activation. The use of transducin as a Gbetagamma scavenger indicated that Gbetagamma subunits rather than Galphai/o acted as the signal transducer. Additional experiments showed that CCh treatment augmented NGF-induced phosphorylation and degradation of the Akt-regulated translation regulator tuberin. This augmentation was also inhibited by PTX pre-treatment or overexpression of transducin. Finally, co-stimulation of PC12 cells with CCh and NGF resulted in enhancement of cell survival. This is the first study that demonstrates the augmentation effect between M4 mAChR and NGF receptor, and the regulatory role of mAChR on tuberin.  相似文献   

14.
Although M1-M4 muscarinic acetylcholine receptors (mAChRs) in HEK-293 cells internalize on agonist stimulation, only M1, M3, and M4 but not M2 mAChRs recycle to the plasma membrane. To investigate the functional consequences of this phenomenon, we compared desensitization and resensitization of M2 versus M4 mAChRs. Treatment with 1 mM carbachol for 1 h at 37 degrees C reduced numbers of cell surface M2 and M4 mAChRs by 40-50% and M2 and M4 mAChR-mediated inhibition of adenylyl cyclase, intracellular Ca2+ concentration ([Ca2+]i) increases, and phospholipase C (PLC) activation by 60-70%. Receptor-mediated inhibition of adenylyl cyclase and [Ca2+]i increases significantly resensitized within 3 h. However, M4 but not M2 mAChR-mediated PLC activation resensitized. At 16 degrees C, M2 mAChR-mediated [Ca2+]i increases and PLC stimulation desensitized to a similar extent as at 37 degrees C. However, at 16 degrees C, where M2 mAChR internalization is negligible, both M2 mAChR responses resensitized, demonstrating that M2 mAChR resensitization proceeds at the plasma membrane. Examination of M2 mAChR responses following inactivation of cell surface mAChRs by quinuclidinyl benzilate revealed substantial receptor reserve for coupling to [Ca2+]i increases but not to PLC. We conclude that M2 mAChR internalization induces long-lasting PLC desensitization predominantly because receptor loss is not compensated for by receptor recycling or receptor reserve.  相似文献   

15.
G protein-coupled receptors (GPCRs) are integral membrane proteins that, in response to activation by extracellular stimuli, regulate intracellular second messenger levels via their coupling to heterotrimeric G proteins. GPCR activation also initiates a series of molecular events that leads to G protein-coupled receptor kinase-mediated receptor phosphorylation and the binding of beta-arrestin proteins to the intracellular face of the receptor. beta-Arrestin binding not only contributes to the G protein-uncoupling of GPCRs, but also mediates the targeting of many GPCRs for endocytosis in clathrin-coated pits. Several GPCRs internalize as a stable complex with beta-arrestin and the stability of this complex appears to regulate, at least in part, whether the receptors are dephosphorylated in early endosomes and recycled back to the cell surface as fully functional receptors, retained in early endosomes or targeted for degradation in lysosomes. More recently, it has become appreciated that the movement of GPCRs through functionally distinct intracellular membrane compartments is regulated by a variety of Rab GTPases and that the activity of these Rab GTPases may influence GPCR function. Moreover, it appears that GPCRs are not simply passive cargo molecules, but that GPCR activation may directly influence Rab GTPase activity and as such, GPCRs may directly control their own targeting between intracellular compartments. This review provides a synopsis of the current knowledge regarding the role of beta-arrestins and Rab GTPases in regulating the intracellular trafficking and function of GPCRs.  相似文献   

16.
RGS proteins serve as GTPase-activating proteins and/or effector antagonists to modulate Galpha signaling events. In live cells, members of the B/R4 subfamily of RGS proteins selectively modulate G protein signaling depending on the associated receptor (GPCR). Here we examine whether GPCRs selectively recruit RGS proteins to modulate linked G protein signaling. We report the novel finding that RGS2 binds directly to the third intracellular (i3) loop of the G(q/11)-coupled M1 muscarinic cholinergic receptor (M1 mAChR; M1i3). This interaction is selective because closely related RGS16 does not bind M1i3, and neither RGS2 nor RGS16 binds to the G(i/o)-coupled M2i3 loop. When expressed in cells, RGS2 and M1 mAChR co-localize to the plasma membrane whereas RGS16 does not. The N-terminal region of RGS2 is both necessary and sufficient for binding to M1i3, and RGS2 forms a stable heterotrimeric complex with both activated G(q)alpha and M1i3. RGS2 potently inhibits M1 mAChR-mediated phosphoinositide hydrolysis in cell membranes by acting as an effector antagonist. Deletion of the N terminus abolishes this effector antagonist activity of RGS2 but not its GTPase-activating protein activity toward G(11)alpha in membranes. These findings predict a model where the i3 loops of GPCRs selectively recruit specific RGS protein(s) via their N termini to regulate the linked G protein. Consistent with this model, we find that the i3 loops of the mAChR subtypes (M1-M5) exhibit differential profiles for binding distinct B/R4 RGS family members, indicating that this novel mechanism for GPCR modulation of RGS signaling may generally extend to other receptors and RGS proteins.  相似文献   

17.
Endocytosis of agonist-activated G protein-coupled receptors (GPCRs) is required for both resensitization and recycling to the cell surface as well as lysosomal degradation. Thus, this process is crucial for regulation of receptor signaling and cellular responsiveness. Although many GPCRs internalize into clathrin-coated vesicles in a dynamin-dependent manner, some receptors, including the M(2) muscarinic acetylcholine receptor (mAChR), can also exhibit dynamin-independent internalization. We have identified five amino acids, located in the sixth and seventh transmembrane domains and the third intracellular loop, that are essential for agonist-induced M(2) mAChR internalization via a dynamin-independent mechanism in JEG-3 choriocarcinoma cells. Substitution of these residues into the M(1) mAChR, which does not internalize in these cells, is sufficient for conversion to the internalization-competent M(2) mAChR phenotype, whereas removal of these residues from the M(2) mAChR blocks internalization. Cotransfection of a dominant-negative isoform of dynamin has no effect on M(2) mAChR internalization. An internalization-incompetent M(2) mutant that lacks a subset of the necessary residues can still internalize via a G protein-coupled receptor kinase-2 and beta-arrestin-dependent pathway. Furthermore, internalization is independent of the signal transduction pathway that is activated. These results identify a novel motif that specifies structural requirements for subtype-specific dynamin-independent internalization of a GPCR.  相似文献   

18.
The mammalian tachykinin system consists of three distinct peptides, substance P, substance K, and neuromedin K, and possesses three corresponding receptors. In this investigation we examined intracellular signal transduction of the individual tachykinin receptors by transfection and stable expression of these receptor cDNAs in Chinese hamster ovary cells. The three receptors commonly showed a rapid and marked stimulation in both phosphatidylinositol (PI) hydrolysis and cyclic AMP formation in response to tachykinin interaction. Direct linkage of the three receptors to both phospholipase C and adenylate cyclase was evidenced by the finding that tachykinin, added together with GTP, activated these enzyme activities in membrane preparations derived from tachykinin receptor-expressing cells. The stimulation of cyclic AMP formation was less efficient than that of PI hydrolysis in receptor-expressing cells as well as their membrane preparations (about 1 order of magnitude difference in the effective peptide concentrations). However, the stimulatory responses of the PI hydrolysis and cyclic AMP formation in both receptor-expressing cells and their membrane preparations were induced in complete agreement with the tachykinin binding selectivity of each subtype of the receptors. This investigation demonstrated unequivocally that the tachykinin receptors have the potential to couple directly to both phospholipase C and adenylate cyclase and to stimulate PI hydrolysis and cyclic AMP formation.  相似文献   

19.
The M(3) muscarinic acetylcholine receptor (mAChR) expressed in HEK-293 cells couples to G(q) and G(12) proteins and stimulates phospholipase C (PLC) and phospholipase D (PLD) in a pertussis toxin-insensitive manner. To determine the type of G protein mediating M(3) mAChR-PLD coupling in comparison to M(3) mAChR-PLC coupling, we expressed various Galpha proteins and regulators of the G protein signaling (RGS), which act as GTPase-activating proteins for G(q)- or G(12)-type G proteins. PLD stimulation by the M(3) mAChR was enhanced by the overexpression of Galpha(12) and Galpha(13), whereas the overexpression of Galpha(q) strongly increased PLC activity without affecting PLD activity. Expression of the RGS homology domain of Lsc, which acts specifically on Galpha(12) and Galpha(13), blunted the M(3) mAChR-induced PLD stimulation without affecting PLC stimulation. On the other hand, overexpression of RGS4, which acts on Galpha(q)- but not Galpha(12)-type G proteins, suppressed the M(3) mAChR-induced PLC stimulation without altering PLD stimulation. We conclude that the M(3) mAChR in HEK-293 cells apparently signals to PLD via G(12)- but not G(q)-type G proteins and that G protein subtype-selective RGS proteins can be used as powerful tools to dissect the pertussis toxin-resistant G proteins and their role in receptor-effector coupling.  相似文献   

20.
The influence of protein kinase C (PKC) activation on cyclic AMP production in GH3 cells has been studied. The stimulation of cyclic AMP accumulation induced by forskolin and cholera toxin was potentiated by 4 beta-phorbol 12,13-dibutyrate (PDBu). Moreover, PDBu, which causes attenuation of the maximal response to vasoactive intestinal polypeptide (VIP), also induced a small right shift in the dose-response curve for VIP-induced cyclic AMP accumulation. PDBu-stimulated cyclic AMP accumulation was unaffected by pretreatment of cells with pertussis toxin or the inhibitory muscarinic agonist, oxotremorine. PDBu stimulation of adenylate cyclase activity required the presence of a cytosolic factor which appeared to translocate to the plasma membrane in response to the phorbol ester. The diacylglycerol-generating agents thyroliberin, bombesin and bacterial phospholipase C each stimulated cyclic AMP accumulation, but, unlike PDBu, did not attenuate the stimulation induced by VIP. These results suggest that PKC affects at least two components of the adenylate cyclase complex. Stimulation of cyclic AMP accumulation is probably due to modification of the catalytic subunit, whereas attenuation of VIP-stimulated cyclic AMP accumulation appears to be due to the phosphorylation of a different site, which may be the VIP receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号