首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A procedure has been developed for the separation of intact metabolically active neuronal and glial cells in bulk from rat cerebral cortex. Separation depended on dispersion of the tissue in a Ficoll medium followed by centrifugation on a discontinuous Ficoll gradient. Up to 1.5x10(7) neuronal cells could be collected from 12 brains within 3hr. The morphological appearance of these cells seemed good, and the fraction was 8.5-fold purified in terms of dry weight. Average dry weight per neuron was 2300mumug. Maximum glial contamination of the neuronal fraction was 11% as determined by carbonic anhydrase measurements. The glial fraction was free from neurons but contained various subcellular contaminants. 2. Concentrations of nucleic acids, phospholipid, protein and phosphoprotein were determined in the separated fractions. The neuronal fraction was richer than the glial in all except phospholipid. Succinate dehydrogenase was equally distributed between neurons and glia but the neuronal fraction was 1.8-fold enriched in cytochrome oxidase. 3. Measurement of respiration by the cells showed an endogenous uptake of 117mmumoles of oxygen/mg./hr. in neurons, and 173mmumoles of oxygen/mg./hr. in glia. Addition of substrate at 10mm stimulated uptake to similar values in both fractions. With glucose it was 390, with pyruvate 355, and with glutamate 215mmumoles of oxygen/mg./hr. This represented a larger stimulation of neuronal than of glial respiration compared with the basal level. 4. Respiration in cell suspensions was 70-80% of that of slices, whereas fractionated tissue homogenates had respiratory rates of only one-third those of the cell suspensions. Lactate dehydrogenase content of cell suspensions was maintained during gradient centrifugation and washing. 5. The possible uses of isolated cell preparations are discussed.  相似文献   

2.
This work was undertaken to improve a separation method for preparation of large amounts of erythroid cells of different age with homogeneous and minimal contamination of myeloid cells. Our method was suitably employed in the study of the decay mechanism of glucose-6-phosphate dehydrogenase (G6PDH) during the erythroid cell maturation.Twenty fractions of erythroid cells at different advancing stages of maturation were prepared by fractionating, at unit gravity, bone marrow cells from anaemic rabbit. The specific activity of the G6PDH was assayed and plotted vs the fraction number and the typical sigmoid curve of the activity decay was drawn. The separated cells were then grouped in three sets of fractions following the three phases of the sigmoid curve and the fractions of each set were combined. From the cytochemical analysis of the three main fractions so obtained, we found a 25–30% myeloid cell contamination in the first fraction, while in the other two fractions the myeloid contamination was 10% or less. For this reason we performed a rapid separation of the first fraction on a discontinuous percoll gradient. By this method, the myeloid cell contamination of the first fraction was levelled down to the other two. The fractions, so obtained, (I, II and III in order of increasing cell maturation) showed a four fold decrease of glucose-6-phosphate dehydrogenase activity expressed both per cell number and on protein base. On the contrary the concentration of the total soluble proteins did not change significantly in the three fractions.The three purified cellular populations were used to provide information on the protein turnover of the erythroid cells during their development. We measured, in intact cells, the rate of synthesis and degradation of total proteins and then, in cell lysates, we determined the rate of degradation of G6PDH, purified from rabbit RBC and radiolabeled by reductive methylation with C14-formaldehyde. The rates of proteolysis obtained with total proteins and methyl-G6PDH clearly indicate that the proteolytic machinery of the erythroblasts reduces its activity during the cell maturation.  相似文献   

3.
A procedure for the isolation and separation of three different subfractions of plasma membrane from the cellular slime mould Dictyostelium discoideum is described. The cells were disrupted by freeze-thawing in liquid N(2) and plasma membranes were purified by equilibrium centrifugation in a sucrose gradient. The cell surface was labelled with radioactive iodide by using the lactoperoxidase iodination method. Alkaline phosphatase was identified as a plasma-membrane marker by its co-distribution with [(125)I]iodide. 5'-Nucleotidase, which has been widely described as a plasma-membrane marker enzyme in mammalian tissues, was not localized to any marked extent in D. discoideum plasma membrane. The isolated plasma membranes showed a 24-fold enrichment of alkaline phosphatase specific activity relative to the homogenate and a yield of 50% of the total plasma membranes. Determination of succinate dehydrogenase and NADPH-cytochrome c reductase activities indicated that the preparation contained 2% of the total mitochondria and 3% of the endoplasmic reticulum. When the plasma-membrane preparation was further disrupted in a tight-fitting homogenizer, three plasma-membrane subfractions of different densities were obtained by isopycnic centrifugation. The enrichment of alkaline phosphatase was greatest in the subfraction with the lowest density. This fraction was enriched 36-fold relative to the homogenate and contained 19% of the total alkaline phosphatase activity but only 0.08% of the succinate dehydrogenase activity and 0.34% of the NADPH-cytochrome c reductase activity. Electron microscopy of this fraction showed it to consist of smooth membrane vesicles with no recognizable contaminants.  相似文献   

4.
While intercellular communication processes are frequently characterized by switch-like transitions, the endocrine system, including the adipose tissue response to insulin, has been characterized by graded responses. Yet here individual cells from adipose tissue biopsies are best described by a switch-like transition between the basal and insulin-stimulated states for the trafficking of the glucose transporter GLUT4. Two statistically-defined populations best describe the observed cellular heterogeneity, representing the fractions of refractive and responsive adipose cells. Furthermore, subjects exhibiting high systemic insulin sensitivity indices (SI) have high fractions of responsive adipose cells in vitro, while subjects exhibiting decreasing SI have increasing fractions of refractory cells in vitro. Thus, a two-component model best describes the relationship between cellular refractory fraction and subject SI. Since isolated cells exhibit these different response characteristics in the presence of constant culture conditions and milieu, we suggest that a physiological switching mechanism at the adipose cellular level ultimately drives systemic SI.  相似文献   

5.
Myxococcus xanthus cells coordinate cellular motility, biofilm formation, and development through the use of cell signaling pathways. In an effort to understand the mechanisms underlying these processes, the inner membrane (IM) and outer membrane (OM) of strain DK1622 were fractionated to examine protein localization. Membranes were enriched from spheroplasts of vegetative cells and then separated into three peaks on a three-step sucrose gradient. The high-density fraction corresponded to the putative IM, the medium-density fraction corresponded to a putative hybrid membrane (HM), and the low-density fraction corresponded to the putative OM. Each fraction was subjected to further separation on discontinuous sucrose gradients, which resulted in discrete protein peaks for each major fraction. The purity and origin of each peak were assessed by using succinate dehydrogenase (SDH) activity as the IM marker and reactivities to lipopolysaccharide core and O-antigen monoclonal antibodies as the OM markers. As previously reported, the OM markers localized to the low-density membrane fractions, while SDH localized to high-density fractions. Immunoblotting was used to localize important motility and signaling proteins within the protein peaks. CsgA, the C-signal-producing protein, and FibA, a fibril-associated protease, were localized in the IM (density, 1.17 to 1.24 g cm(-3)). Tgl and Cgl lipoproteins were localized in the OM, which contained areas of high buoyant density (1.21 to 1.24 g cm(-3)) and low buoyant density (1.169 to 1.171 g cm(-3)). FrzCD, a methyl-accepting chemotaxis protein, was predominantly located in the IM, although smaller amounts were found in the OM. The HM peaks showed twofold enrichment for the type IV pilin protein PilA, suggesting that this fraction contained cell poles. Two-dimensional polyacrylamide gel electrophoresis revealed the presence of proteins that were unique to the IM and OM. Characterization of proteins in an unusually low-density membrane peak (1.072 to 1.094 g cm(-3)) showed the presence of Ta-1 polyketide synthetase, which synthesizes the antibiotic myxovirescin A.  相似文献   

6.
Abstract— Two membrane fractions were obtained from electric organ tissue of the electric eel by sucrose gradient centrifugation of tissue homogenates. Electron microscopic examination showed that both fractions contained mainly vesicular structures (microsacs). Both the light and heavy fractions had a-bungarotoxin-binding capacity and Na+-K+ ATPase activity, while only the light fraction had AChE activity. The polypeptide patterns of vesicles derived from both the light and heavy fractions were examined by SDS-polyacrylamide gel electrophoresis and found to be very similar. The ratio of protein to phospholipid in the light vesicles was much lower than in the heavy vesicles, but the relative amounts of individual phospholipids in the two fractions were similar. A marked difference in the permeability of the light and heavy vesicles was observed by measuring efflux of both [14C]sucrose and 22Na+, and also by monitoring volume changes induced by changing the osmotic strength of the medium. All three methods showed the heavy vesicles to be much more permeable than the light ones. Only the light vesicles displayed increased sodium efflux in the presence of carbamylcholine. The AChE in the light fraction does not appear to be membrane-bound, but is rather a soluble enzyme, detached from the membrane during homogenization, which migrates on the gradient similarly to that of the light vesicles. This is supported by the fact that the bulk of the AChE is readily removed by washing the vesicles. Moreover, under the conditions employed in our sucrose gradient separations,‘native’14 S + 18 S AChE exists in the form of aggregates which migrate very similarly to the major peak of AChE activity of tissue homogenates. Separated innervated and non-innervated surfaces of isolated electroplax were obtained by microdissection. α-Bungarotoxin-binding capacity was observed only in the innervated membrane. About 80% of the AChE was in the innervated membrane, and about 70% of the Na+-K+ ATPase in the non-innervated membrane. The data presented indicate that the light and heavy vesicle fractions separated by sucrose gradient centrifugation are not derived exclusively from the innervated and non-innervated membranes respectively, as previously suggested by others, but contain membrane fragments from both sides of the electroplax. The separation of two populations on sucrose gradients may be explained both by the differences in permeability and in protein to phospholipid ratios.  相似文献   

7.
We have developed methods for separating the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus. The total membrane fraction from ethylenediaminetetraacetic acid-lysozyme-treated cells was resolved into three major fractions by isopycnic density centrifugation. Between 85 and 90% of the succinate dehydrogenase and cyanide-sensitive reduced nicotinamide adenine dinucleotide oxidase activity was found in the first (I) fraction (rho = 1.221 g/ml) and 80% of the membrane-associated 2-keto-3-deoxyoctonate was found in the third (III) fraction (rho = 1.166 g/ml). The middle (II) fraction (rho = 1.185 g/ml) appeared to be a hybrid membrane fraction and contained roughly 10 to 20% of the activity of the enzyme markers and 2-keto-3-deoxyoctonate. No significant amounts of deoxyribonucleic acid or ribonucleic acid were present in the three isolated fractions, although 26% of the total cellular deoxyribonucleic acid and 3% of the total ribonucleic acid were recovered with the total membrane fraction. Phosphatidylethanolamine made up the bulk (60 to 70%) of the phospholipids in the membrane fractions. However, virtually all of the phosphatidylserine and cardiolipin were found in fraction I. Fraction III appeared to contain elevated amounts of lysophospholipids and contained almost three times the amount of total phospholipid as compared with fraction I. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved approximately 40 polypeptides in the total membrane fraction. Two-thirds of these polypeptides were enriched in fraction I, and the remainder was enriched in fraction III. Fraction II contained a banding pattern similar to the total membrane fraction. Electron microscopy revealed that vegetative cells of M. xanthus possessed an envelope similar to that of other gram-negative bacteria; however, the vesicular appearance of the isolated membranes was somewhat different from those reported for Escherichia coli and Salmonella typhimurium. The atypically low bouyant density of the outer membrane of M. xanthus is discussed with regard to the high phospholipid content of the outer membrane.  相似文献   

8.
Rat liver was fractionated into template-active (euchromatin) and template-inactive (heterochromatin) fractions by controlled shearing and glycerol gradient centrifugation. The histone and nonhistone proteins associated with each fraction were compared. No qualitative differences in histone content were observed, but heterochromatin contained 1.5 times more histone protein than did euchromatin. The nonhistone proteins of each chromatin fraction were fractionated on the basis of salt solubility into loosely bound (those extracted by 0.35 m NaCl), tightly bound (those extracted by 2.0 m NaCl), and residual nonhistone proteins (those not extracted by 2.0 m NaCl). Euchromatin contained 3.7 times more loosely bound nonhistone proteins than did heterochromatin, while the latter contained twice as much residual nonhistone protein. Euchromatin was devoid of tightly bound nonhistone protein, a component of heterochromatin. Electrophoretic analysis of these nonhistone protein fractions revealed marked heterogeneity, with a number of bands unique to either eu- or heterochromatin.  相似文献   

9.
Eight fractions of human gamma-glutamyltransferase were prepared from liver tissue, serum and bile by gel filtration. Bile, pooled serum from patients with high gamma-glutamyltransferase activities and serum in which liver tissue had been incubated, each contained an enzyme fraction with molecular weight greater than 10(6). A fraction of about 80,000 molecular weight was obtained from bile, and by incubation of liver tissue in serum or sodium chloride solution, but not from the serum pool. The main enzyme fraction in native serum had a molecular weight of about 300,000, and the molecular weight of gamma-glutamyltransferase partially purified from liver was initially 160,000. The fractions had similar Km and Ki values, and differences in heat stability and binding to concanavalin A were not marked.  相似文献   

10.
1. The cytosol alcohol dehydrogenase (alcohol-NAD oxidoreductase, EC 1.1.1.1) of Astasia longa was partially purified and characterized from cells grown in the presence of air+CO(2) (95:5) or of O(2)+CO(2) (95:5). 2. Under both these growth conditions, the cells contained a fraction, ADHII, which was characterized by its electrophoretic properties, by a high degree of resistance to heat inactivation, by a sharp pH optimum at 8.2 and by its kinetic properties. The estimated molecular weight of this fraction was approx. 150000, which is similar to that of yeast alcohol dehydrogenase. 3. Cells grown in air+CO(2) (95:5) contain another fraction, ADHI, which can be further separated into two subfractions by polyacrylamide-gel electrophoresis and by DEAE-cellulose chromatography. This was termed fraction ;ADHI-air'. 4. In addition to fraction ADHII, cells grown in the presence of O(2) have a twofold increase in fraction ADHI-air activity as well as two new fractions that could not be demonstrated in air-grown cells. These new fractions which we have called fraction ;ADHI-O(2)', account for about 10% of the total activity. 5. The ADHI fractions (air) and (O(2)) have similar broad pH-activity curves and similar kinetic properties, both having a lower K(m) for ethanol and NAD than fraction ADHII. However, they differ from each other with respect to their activity with various substrates. The estimated molecular weight of these two ADHI fractions and their chromatographic behaviour on hydroxyapatite and on DEAE-cellulose also distinguish them.  相似文献   

11.
Rickettsia prowazeki were disrupted in a French pressure cell and fractionated into soluble (cytoplasm) and envelope fractions. The envelope contained 25% of the cell protein, with the cytoplasm containing 75%. Upon density gradient centrifugation, the envelope fraction separated into a heavy band (1.23 g/cm3) and a lighter band (1.19 g/cm3). The heavy band had a high content of 2-keto-3-deoxyoctulosonic acid, a marker for bacterial lipopolysaccharide, but had no succinic dehydrogenase, a marker for cytoplasmic membrane activity, and therefore represented outer membrane. The lighter band exhibited a high succinate dehydrogenase activity, and thus contained inner (cytoplasmic) membrane. Outer membrane purified by this method was less than 5% contaiminated by cytoplasmic membrane; however, inner membrane from the gradient was as much as 30% contaminated by outer membrane. The protein composition of each cellular fraction was characterized by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. The outer membrane contained four major proteins, which were also major proteins of the whole cell. The cytoplasmic membrane and soluble cytoplasm exhibited a more complex pattern on gels.  相似文献   

12.
The S1 Percoll procedure, devised empirically for cortical tissue, provides highly purified, functionally viable synaptosomes on a four-step Percoll gradient. Here, for the first time, the procedure has been applied to rat hippocampus, and the gradient fractions have been analysed with respect to cholinergic markers and the synaptosomal index, lactate dehydrogenase. The presynaptic cholinergic markers choline acetyltransferase and [3H]choline uptake were most enriched in fraction 4. In contrast, acetylcholinesterase activity was broadly distributed across the gradient, consistent with the separation of synaptic plasma membranes (in fractions 1 and 2) from synaptosomes (in fractions 3 and 4). This is supported by the recovery of muscarinic binding sites labelled with [3H]quinuclidinylbenzilate in fractions 1 and 2. (-)-[3H]-Nicotine binding sites, however, were most enriched in fraction 4, consistent with their predominantly presynaptic localisation in the CNS. These results demonstrate the applicability of the S1 Percoll method to discrete brain regions for the recovery of homogeneous and viable synaptosome fractions. The separation of presynaptic terminals from post-synaptic membranes is a further advantage of this technique.  相似文献   

13.
The aim of this work was to investigate how neurons and glial cells separated from rat brain cortex respond to “in vitro” oxidative stress induced by incubation of the cellular fractions in the presence of prooxidant mixtures; in addition, the endogenous enzymatic antioxidant capacity of the purified fractions was investigated. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex following passages of the tissue through meshes and centrifugations. The following parameters were evaluated: antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), and glucose-6-phosphate dehydrogenase (G6PDH); lipid peroxidation products (TBARS) prior to (basal) and after (iron-stimulated) incubation with a mixture of iron and ascorbic acid; intracellular production of reactive oxygen species (ROS) using a fluorescent probe, dichlorofluorescin-diacetate, in basal, iron-stimulated, and menadione stimulated conditions. SOD and GSHPx activities showed no significant changes between neurons and glia, whereas CAT and G6PDH activities were found to be significantly lower in glia than in neurons. TBARS levels were significantly lower in the glial fraction than in neurons, both in basal and iron-stimulated conditions. ROS production showed no differences between neurons and glia in both basal and menadione-stimulated conditions. Iron-stimulation produced a marked increase in ROS production, limited to the neuronal fraction, with the glial values being similar to the basal ones. Our conclusion is that glia and neurons isolated from rat cerebral cortex show a similar pattern of the most important antioxidant enzymes and of their basal ROS production, whereas glia is more resistant in “oxidative stress” conditions.  相似文献   

14.
A simple preparative method is described for isolation of the cytoplasmic and outer membranes from E. coli. The characteristics of both membrane fractions were studied chemically, biologically, and morphologically. Spheroplasts of E. coli K-12 strain W3092, prepared by treating cells with EDTA-lysozyme [EC 3.2.1.17], were disrupted in a French press. The crude membrane fraction was washed with 3 mM EDTA-10% (w/v) sucrose, pH 7.2, and the cytoplasmic membranes and outer membranes were separated by sucrose isopycnic density gradient centrifugation. The crude membrane fraction contained approximately 10% of the protein of the whole cells, 0.3% of the DNA, 0.7% of the RNA, 0.3% of the peptidoglycan, and about 30% of the lipopolysaccharide. The cytoplasmic membrane fraction was rich in phospholipid, while the outer membrane fraction contained much lipopolysaccharide and carbohydrate; the relative contents of lipopolysaccharide and carbohydrate per mg protein in the cytoplasmic membrane fraction were 12 and 40%, respectively, of the contents in the outer membrane fraction. Cytochrome b1, NADH oxidase, D-lactate dehydrogenase [EC 1.1.1.28], succinate dehydrogenase [EC 1.3.99.1], ATPase [EC 3.5.1.3], and activity for concentrative uptake of proline were found to be localized mainly in the cytoplasmic membranes; their specific activities in the outer membrane fraction were 1.5 to 3% of those in the cytoplasmic membrane fraction. In contrast, a phospholipase A appeared to be localized mainly in the outer membranes and its specific activity in the cytoplasmic membrane fraction was only 5% of that in the outer membrane fraction. The cytoplasmic and outer membrane fractions both appeared homogeneous in size and shape and show vesicular structures by electron microscopy. The advantages of this method for large scale preparation of the cytoplasmic and outer membrane fractions are discussed.  相似文献   

15.
The activity of 3beta-hydroxy steroid dehydrogenase (EC 1.1.1.51) in the mitochondrial fraction of rat adrenal homogenates was approx. 31% of the total activity recovered after differential centrifugation and washing of the particulate fractions. Some 45% of the total activity was found in the microsomal fraction. The activity was assayed by a radioisotopic method devised in this laboratory for the purpose of studying small quantities of tissue and cell fractions. Satisfactory separation of the two fractions was demonstrated by electron microscopy of the pellets and by comparative recoveries of RNA, steroid 21-hydroxylase and cytochrome c oxidase in the various compartments. Analyses of the kinetics of the enzyme activity in the two fractions revealed no significant differences in apparent K(m) for pregnenolone, dehydroepiandrosterone or NAD(+), but demonstrated a distinct difference in the K(m) for NADP(+). pH optima and susceptibility to cyanoketone inhibition were similar in both fractions.  相似文献   

16.
Fractions enriched in plasma membranes have been obtained from peripheral nerves enriched 89% in quiescent Schwann cells. Fractions were prepared from the intrafascicular tissue of desheathed distal stumps of cat sciatic nerve 8-10 weeks after transection and suture in the upper thigh. Tissue enriched in Schwann cells was minced, homogenized, and centrifuged to remove nuclei and undispersed tissue. Centrifugation of the resulting supernatant produced a pellet that was osmotically shocked, layered over a discontinuous sucrose gradient, and recentrifuged. Fractions enriched in plasma membrane (PM) markers were pooled, osmotically shocked for 16 h, layered over a second discontinuous sucrose density gradient, and recentrifuged. Membrane fractions (0.6 M:0.85 M and 0.85 M:1.0 M interfaces) contained a homogeneous population of unilamellar vesicles free of myelin. The 0.85 M fraction was enriched in 5'-nucleotidase, 2',3'-cyclic nucleotide 3'-phosphohydrolase. and specific [3H]ouabain binding, 4.8-, 3.0-, and 5.7-fold over the crude homogenate, respectively. These fractions also demonstrated low enzyme activities for succinate dehydrogenase, lactate dehydrogenase, and glucose-6-phosphatase (9, 13, and 15% of control values, respectively). Protein yield of the PM fraction (0.85 M) was approximately 0.6 mg/g of denervated nerve. This preparation should be suitable to characterize the surface properties of Schwann cells free of neuronal regulation.  相似文献   

17.
Rapid separation of large numbers of human peripheral blood mononuclear cells into fractions enriched for B lymphocytes, T lymphocytes, or monocytes was accomplished by counterflow centrifugal elutriation (CCE). The first fraction contained 98% of the platelets. Ten additional fractions containing subpopulations of mononuclear cells were collected by sequential increases in the flow rate while maintaining a constant centrifuge speed. Analysis of the fractions using monoclonal antibodies revealed that fraction 2, which was free of esterase-positive monocytes, was highly enriched for B cells. T lymphocytes (OKT3+) were the predominant cell type found in fraction 4. No enrichment for T-lymphocyte-helper (OKT4+) or -suppressor (OKT8+) subpopulations was observed in the lymphocyte containing fractions. Three fractions (7-9), highly enriched for esterase-positive cells, were predominantly OKM1+ monocytes with no evidence of selective separation of monocyte subpopulations. Thus, cell fractions enriched for B cells, T cells, and monocytes could be obtained, by utilizing CCE, in large enough quantities to enable analysis of their functional properties. Of particular interest was the ability to separate small, resting B lymphocytes from monocytes.  相似文献   

18.
Neutrophils, isolated in large quantities from porcine blood were disrupted by nitrogen cavitation and separated by differential centrifugation into a nuclear fraction and a post-nuclear supernatant. The latter was subfractionated by sucrose density gradient centrifugation into cytosol, a fraction consisting of membrane vesicles and two granule-rich fractions. The membrane fraction accounted for 1.9% of the protein in the post-nuclear supernatant, the light granule fraction for 2.2% and the dense granule fraction for 4.2%. Catalase, lactate dehydrogenase and malate dehydrogenase were largely confined to the cytosol. The dense granule fraction contained the highest quantities of the hydrolytic enzymes, although the membrane fraction was also rich in alkaline and acid phosphatase and gamma-glutamyl transpeptidase activities. Electron microscopy of the membrane fraction showed intact membrane vesicles, whereas the granular fractions consisted of electron-dense, membrane-bound granules. Two granular fractions were isolated which contained granules of differing size and density. 3H-labeled wheat germ agglutinin bound to the surface of intact neutrophils and when these were disrupted and fractionated the membrane fraction showed a specific binding activity 16-times greater than that of the cavitated sample. The membrane fraction interacted with the detergent digitonin and as a result underwent density perturbation increasing from 1.13 g X cm-3 to 1.18 g X cm-3. Dodecylsulphate-polyacrylamide gel electrophoresis showed the membrane fraction to consist of at least 40 protein bands, with relative molecular masses ranging from 200 000-16 000. The granule fractions contained less protein bands, with a protein composition quite distinct from that of the membrane fraction.  相似文献   

19.
Ascites cells were labeled by intraperitoneal injection of [3H]cholesterol and aortic smooth muscle cells by addition of [3H]cholesterol to the serum component of the culture medium. The release of cholesterol from cells into a serum-free medium supplemented with the various "acceptors" was studied using ascites cells in suspension and aortic smooth muscle cells in a multilayer culture. Unfractionated human high-density apolipoprotein was somewhat more effective in the removal of labeled cellular free cholesterol, in both cell types, than apolipoprotein derived from rat high-density lipoprotein. Following separation of human high-density apolipoprotein into four fractions by Sephadex chromatography, the effect of each fraction on the removal of cellular cholesterol from ascites cells was studied. The individual fractions had a lower capacity for cholesterol removal than the original unfractionated high-density apolipoprotein and the lowest activity was detected in Fraction II which comprised 75% of the total apolipoprotein. The effectiveness to remove cholesterol could be restored to all the fractions, as well as enhanced, by addition of sonicated suspensions of lecithin or sphingomyelin, which by themselves promoted a more limited removal of cellular cholesterol. Negatively stained preparations of mixtures of the four fractions and sonicated dispersion of lecithin were shown to consist of vesicles and discs of various sizes. Addition of the apolipoprotein fractions (especially Fractions II and IV) to sonicated dispersion of sphingomyelin resulted in a pronounced formation of discs which showed a high tendency towards stack formation. Mixtures of Fraction II and lecithin or sphingomyelin were effective in the release of cellular cholesterol from multilayers of aortic smooth muscle cells in culture. These results show the feasibility of net removal of cholesterol from cells which grow in a form resembling a tissue and thus provide a model to study the role of apolipoprotein-phospholipid mixtures in cholesterol removal from cells and tissues in vivo.  相似文献   

20.
Light and heavy membrane fractions have been isolated by equilibrium sucrose density centrifugation from Rhodopseudomonas capsulata 938 GCM grown aerobically in the dark (chemotrophically) and anaerobically in the light (phototrophically). The densities of the light and heavy fractions from phototrophic cells were 1.1004 to 1.1006 and 1.1478, respectively, and the densities of the light and heavy fractions from chemotrophic cells were 1.0957 to 1.0958 and 1.1315, respectively. Both fractions were active in photochemical and respiratory functions and in electron transport-coupled phosphorylation. The light membrane fraction isolated from chemotrophic cells contained the reaction center and the light-harvesting pigment-protein complex B 870, but not the variable light-harvesting complex B 800-850. A small amount of the complex B 800-850 was present in the light fraction isolated from phototrophically grown cells, but it was not energetically coupled to the photosynthetic apparatus. From inhibitor studies, difference spectroscopy, and measurement of enzyme activities it was tentatively concluded that the light membrane fraction contains only the reduced nicotinamide adenine dinucleotide-oxidizing electron transport chain having a KCN-insensitive, low-potential cytochrome c oxidase, whereas the heavy fraction contains additionally the succinate dehydrogenase and a high-potential cytochrome b terminal oxidase sensitive to KCN. The light membrane fraction was more labile than the heavy fraction in terms of phosphorylating activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号