首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have shown that mediated Cl- transport which occurs by at least two processes (Cl- -dependent cation cotransport and Cl- self-exchange) becomes progressively inhibited when extracellular Cl- exceeds about 60 mM (Hoffmann et al., 1979). To account for this type of kinetic behavior, that is, self-inhibition, an anion transport system possessing two sites, a high affinity transport site and a lower affinity modifier site is suggested (Dalmark, 1976). In the present experiments we have attempted to determine which of the mediated transport pathways is susceptible to self-inhibition by studying the dependence of the steady state Cl- flux on the extracellular Cl- concentration and how DIDS, an inhibitor of Cl- self-exchange, and H + affect this relationship. Addition of DIDS to Ehrlich cells results in inhibition of Cl- transport at every Cl- concentration tested (40-150 mM). Moreover, the Cl- flux/Cl- concentration relationship no longer exhibits self-inhibition, suggesting that this phenomenon is a characteristic of the Cl- self-exchanger rather than of the Cl- -dependent cation cotransport system. Lowering the extracellular pH (pHo) from 7.35 to 5.30 stimulates Cl- transport by a process that saturates with respect to [H +]. Half-maximal stimulation occurs at pHo 6.34. A comparison of the kinetic parameters, Ks and Jmax, calculated from the ascending limb of the Cl- flux/Cl- concentration curve at pHo 7.30 to those at pHo 5.50 show that the values for Ks are almost identical (23.6 mM and 21.3 mM, respectively), while the values for Jmax [22.2 mEq/Kg dry wt) X min] differ by only 15%. This finding along with the observation that DIDS completely blocks H + stimulation of Cl- transport is compatible with the suggestion that H + interact at the modifer site of the Cl- self-exchanger and thereby prevents self-inhibition.  相似文献   

2.
To test the hypothesis that amino acid residues in band 3 with titratable positive charges play a role in the binding of anions to the outside-facing transport site, we measured the effects of changing external pH (pH(O)) on the dissociation constant for binding of external iodide to the transport site, K(O)(I). K(O)(I) increased with increasing pH(O), and a significant increase was seen even at pH(O) values as low as 9.9. The dependence of K(O)(I) on pH(O) can be explained by a model with one titratable site with pK 9.5 +/- 0.2 (probably lysine), which increases anion affinity for the external transport site when it is in the positively charged form. A more complex model, analogous to one recently proposed by Bjerrum (1992), with two titratable sites, one with pK 9.3 +/- 0.3 (probably lysine) and another with pK > 11 (probably arginine), gives a slightly better fit to the data. Thus, titratable positively charged residues seem to be functionally important for the binding of substrate anions to the outward-facing anion transport site. In addition, analysis of Dixon plot slopes for L inhibition of Cl- exchange at different pH 0 values, coupled with the assumption that pH(O) has parallel effects on external I- and Cl- binding, indicates that k', the rate-constant for inward translocation of the complex of Cl- with the extracellular transport site, decreases with increasing pH(O). The data are compatible with a model in which titration of the pK 9.3 residue decreases k to 14 +/- 10% of its value at neutral pH(O). This result, however, together with Bjerrum's (1992) observation that the maximum flux J(M)) increases 1.6- fold when this residue is deprotonated, makes quantitative predictions that raise significant questions about the adequacy of the two titratable site ping-pong model or the assumptions used in analyzing the data.  相似文献   

3.
The binding of [3H]nitrobenzylthioinosine (NBMPR) to specific sites in CNS membranes was investigated using cortical tissue from a variety of mammalian species. Mass law analysis of the site-specific binding of NBMPR data revealed that rat, mouse, guinea pig, and dog cortical membranes each contained an apparent single class of high-affinity (KD 0.11-4.9 nM) binding sites for NBMPR; rabbit cortical membranes, however, exhibited two distinct classes of NBMPR binding sites with KD values of 0.4 nM and 13.8 nM. Dipyridamole, a potent inhibitor of nucleoside transport, produced a biphasic profile of inhibition of the binding of NBMPR to guinea pig, rabbit, and dog membranes (IC50 less than 20 nM and IC50 greater than 6 microM for NBMPR binding sites displaying high and low affinity for dipyridamole, respectively). These results are indicative of heterogeneity of NBMPR binding sites in mammalian cortical membranes. Rat and mouse cortical membranes appear to possess only one type of NBMPR binding site, which has low affinity for dipyridamole. Detailed analysis of inhibitor-induced dissociation of NBMPR from its sites in each species led to the conclusion that these multiple forms of NBMPR binding sites are different conformations of a single site associated with the CNS nucleoside transport system, rather than two distinct sites. It is also suggested that the affinity of dipyridamole for each conformation of NBMPR site indicates the susceptibility of that conformation of the nucleoside transport system to inhibition by dipyridamole.  相似文献   

4.
The role of t-butylbicyclophosphorothionate (TBPS) as an antagonist of gamma-aminobutyric acid (GABA) was studied with primary cultures of neurons from the chick embryo cerebrum. The addition of GABA stimulated the uptake of 36Cl- by neurons and the dose dependence of this effect followed hyperbolic kinetics with a K0.5 = 1.3 microM for GABA. TBPS proved to be a potent inhibitor of GABA-dependent Cl- uptake (IC50 = 0.30 microM). Analysis of the kinetics of this process revealed that TBPS is a noncompetitive inhibitor (Ki = 0.15 microM) with respect to GABA. Scatchard analysis of direct binding of [35S]TBPS to membranes isolated from neuronal cultures gave curvilinear plots. These could be resolved by nonlinear regression methods into two components with KD values of 3.1 nM and 270 nM. The TBPS binding constant for this lower affinity site agreed well with the IC50 and Ki values for inhibition of Cl- flux, suggesting that this site is physiologically relevant to GABA antagonism. GABA was a noncompetitive displacer of [35S]TBPS binding to the lower affinity site. The Ki value for this displacement by GABA (1.7 microM) was comparable to the value for GABA enhancement of Cl- flux. The binding of [35S]TBPS to its low-affinity site on neuronal membranes was ninefold higher in the presence of Cl- than with gluconate, an impermeant anion. The rank order for anion stimulation of [35S]TBPS binding was Br- greater than or equal to SCN- greater than Cl- greater than or equal to NO3- greater than I- greater than F- greater than gluconate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The relationship between the nucleoside transport system and the nitrobenzylthioinosine-sensitive and -resistant [3H]dipyridamole binding sites was examined by comparing the characteristics of [3H]dipyridamole binding with those of [3H]nitrobenzylthioinosine binding and [3H]-uridine influx in rabbit and guinea pig cerebral cortical synaptosomes. Two distinct high-affinity synaptosomal membrane-associated [3H]dipyridamole binding sites, with different sensitivities to inhibition by nitrobenzylthioinosine, were characterized in the presence of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS, 0.01%) to prevent [3H]dipyridamole binding to glass tubes and filters. The nitrobenzylthioinosine-resistant [3H]-dipyridamole binding sites represented a greater proportion of the total membrane sites in guinea pig than in rabbit (40 vs. 10% based on inhibition studies). In rabbit, nitrobenzylthioinosine-sensitive [3H]dipyridamole binding (KD = 1.4 +/- 0.2 nM) and [3H]nitrobenzylthioinosine binding (KD = 0.30 +/- 0.01 nM) appeared to involve the same membrane site associated with the nitrobenzylthioinosine-sensitive nucleoside transporter. By mass law analysis, [3H]-dipyridamole binding in guinea pig could be resolved into two components based on sensitivity to inhibition by 1 microM nitrobenzylthioinosine. The nitrobenzylthioinosine-resistant [3H]dipyridamole binding sites were relatively insensitive to inhibition by all of the nucleoside transport substrates and inhibitors tested, with the exception of dipyridamole itself. In guinea pig synaptosomes, 100 microM dilazep blocked nitrobenzylthioinosine-resistant [3H]uridine transport completely but inhibited the nitrobenzylthioinosine-resistant [3H]dipyridamole binding component by only 20%. Furthermore, a greater percentage of the [3H]dipyridamole binding was nitrobenzylthioinosine resistant in guinea pig compared with rabbit, yet both species had a similar percentage of nitrobenzylthioinosine-resistant [3H]uridine transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Interaction of anions and ATP with the coated vesicle proton pump   总被引:5,自引:0,他引:5  
H Arai  S Pink  M Forgac 《Biochemistry》1989,28(7):3075-3082
ATP-driven proton transport in intact clathrin-coated vesicles requires the presence of a permeant anion, such as Cl-, to provide charge compensation during the electrogenic movement of protons. Using the purified (H+)-ATPase from clathrin-coated vesicles in both the detergent-solubilized and reconstituted states, we have studied the direct effects of anions on the activity of this enzyme. Both proton transport and ATP hydrolysis by the purified enzyme are independent of the presence of Cl-. In addition, proton transport does not occur even at high Cl- concentrations unless K+ and valinomycin are present to dissipate the membrane potential generated. These results indicate that the anion channel which provides for Cl- flux in intact coated vesicles is not a component of the purified (H+)-ATPase. Inhibition of ATPase activity is observed in the presence of I-, NO3-, or SO4(2-), with 50% inhibition occurring at 350 mM I-, 50 mM NO3-, or 40 mM SO4(2-). The presence of ATP lowers the concentration of I- required for 50% inhibition from 350 mM to 100 mM and increases the maximal inhibition observed in the presence of NO3- from 65% to 100%. Two separate mechanisms appear to be responsible for anion inhibition of the (H+)-ATPase. Thus, I- and high concentrations of NO3- (in the presence of ATP) cause inhibition by dissociation of the (H+)-ATPase complex, while SO4(2-) and NO3- (in the absence of ATP) cause inhibition without dissociation of the complex, suggesting the existence of an inhibitory anion binding site on the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Tracer anion exchange flux measurements have been carried out in human red blood cells with the membrane potential clamped at various values with gramicidin. The goal of the study was to determine the effect of membrane potential on the anion translocation and binding events in the catalytic cycle for exchange. The conditions were arranged such that most of the transporters were recruited into the same configuration (inward-facing or outward-facing, depending on the direction of the Cl- gradient). We found that the membrane potential has no detectable effect on the anion translocation event, measured as 36Cl(-)-Cl- or 36Cl(-)-HCO3- exchange. The lack of effect of potential is in agreement with previous studies on red cells and is different from the behavior of the mouse erythroid band 3 gene expressed in frog oocytes (Grygorczyk, R., W. Schwarz, and H. Passow. 1987. J. Membr. Biol. 99:127-136). A negative potential decreases the potency of extracellular SO4= as an inhibitor of either Cl- or HCO3- influx. Because of the potential-dependent inhibition by SO4=, conditions could be found in which a negative intracellular potential actually accelerates 36Cl- influx. This effect is observed only in media containing multivalent anions. The simplest interpretation of the effect is that the negative potential lowers the inhibitory potency of the multivalent anion by lowering its local concentration near the transport site. The magnitude of the effect is consistent with the idea that the anions move through 10-15% of the transmembrane potential between the extracellular medium and the outward-facing transport site. In contrast to its effect on extracellular substrate binding, there is no detectable effect of membrane potential on the competition between intracellular Cl- and SO4= for transport sites. The lack of effect of potential on intracellular substrate binding suggests that the access pathway leading to the inward-facing transport site is of lower electrical resistance than that leading to the extracellular substrate site.  相似文献   

8.
Dipyridamole in concentration of 25 microM inhibited the multiplication of vaccinia virus in about 90% of cells. In the presence of this substance, [3H]-uptake was sharply reduced both in uninfected and infected RK13 cells, while [14C]-uptake was not inhibited incorporation of [3H]-thymidine and [14C]-amino acids into viral particles. The present findings suggest that the antiviral character of dipyridamole is related with the inhibition of the substrate transport through the cell membrane.  相似文献   

9.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4'-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25 degrees C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 +/- 0.11) X 10(-10) moles . min-1 . cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 +/- 14 mM and for the modifier site Ks' = 653 +/- 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25 degrees C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n approximately equal to 1), indicating a single site of inhibition for the two probes. The kinetics of sulfate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate transport site was the target for the action of the inhibitors. The inhibitory constants (Ki) for the transport sites were 0.45 +/- 0.10 microM for DNDS and 0.21 +/- 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus operandi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion transport sites are also the sites of inhibition and of labeling of covalent binding analogs of BS and DS.  相似文献   

10.
The linkage between the four-step binding of oxygen and the binding of heterotropic anionic ligands in hemoglobin was investigated by accurately measuring and analyzing the oxygen equilibrium curves of human adult hemoglobin in the presence and absence of various concentrations of one or two of the following materials: chloride (Cl-), 2,3-diphosphoglycerate (DPG), and inositol hexaphosphate (IHP). Each equilibrium curve was analyzed according to the Adair equation to evaluate the four-step oxygen equilibrium constants (Adair constants) and the median oxygen pressure. The binding constants of the anions for the molecular species of hemoglobin carrying j oxygen molecules, Hb(O2)j(j=0,1,...,4), were evaluated from the dependences of the Adair constants and the median oxygen pressure on the anion concentration by introducing a model which takes the competitive binding of Cl- and DPG or IHP into account. Assumptions made in the model are: (a) the hemoglobin molecule has two oxygen-linked binding sites for Cl- which are equivalent and independent and (b) no Cl- can be bound to hemoglobin to which DPG or IHP is already bound and vice versa. Thus, we could obtain values for the intrinsic binding constants of Cl- and DPG, i.e., the constants in the absence of other competitive anions. For IHP, only the binding constants and apparent binding constants for Hb and Hb(O2)2 were obtained. Values of the Cl- binding constants and apparent binding constants for DPG and IHP, i.e., the binding constants in the presence of Cl- for Hb and Hb(O2)4, were in reasonable agreement with literature values. From the binding constants we calculated anion binding curves for Hb(O2)j(J=0,1,...,4), the number of anions bound to Hb(O2)J, And the relationship between fractional anion saturation of hemoglobin and fractional oxygen saturation. The numbers of released anions are not uniform with respect to oxygenation step. This non-uniformity is the reason for the changes in the shape of the oxygen equilibrium curve with anion concentration changes and for the non-uniform dependences of the Adair constants on anion concentration, and also results in non-linear relations between anion saturation and oxygen saturation. The anion binding constants and various binding properties of the anions derived from those constants are consistent with those observed by other investigators using different techniques, indicating that the present model describes the oxygen-linked competitive anion binding well.  相似文献   

11.
Band 3 catalyzes the one-for-one exchange of monovalent anions across the red cell membrane. At least two anion binding sites have been postulated to exist on the transport unit: 1) a transport site that has been observed by saturation kinetics and by 35 Cl NMR studies of chloride binding, and 2) a 35Cl NMR-invisible inhibitory site that has been proposed to explain the inhibition of anion exchange at large anion concentrations. A number of independent studies have indicated that the transport site is alternately exposed to different sides of the membrane during the transport cycle. Yet the role, if any, of the postulated inhibitory site in the transport cycle is not known. Here it is shown that: 1) when the [Cl-], [Br-], or pH is varied, the band 3 transport sites on both sides of the membrane behave like a homogeneous population of simple anion binding sites in 35Cl NMR experiments, and 2) when the [Cl-] is varied, the outward-facing transport site behaves like a simple anion binding site. These results indicate that the postulated inhibitory site has no effect on chloride binding to the transport site. Instead, the results are quantitatively consistent with the ping-pong model (Gunn, R. B., and Fr?lich, O. (1979) J. Gen. Physiol. 74, 351-374), which states that the transport site is the only site involved in the transport cycle. Expressions are derived for the macroscopically observed characteristics of a ping-pong transporter: these characteristics are shown to be weighted averages of the microscopic properties of the inward- and outward-facing conformations of the transport site. In addition to supporting the simplicity of the transport mechanism, the high pH titration curve for chloride binding to the transport site provides insight into the structure of the site. The macroscopically observed pKA = 11.1 +/- 0.1 in the leaky ghost system indicates that an arginine must provide the essential positive charge in the inward- or outward-facing conformation of the transport site, or in both conformations.  相似文献   

12.
A series of nucleoside transport inhibitors has been tested for their ability to displace [3H]diazepam binding to CNS membranes. No correlation between their potency as [3H]adenosine uptake blockers and as inhibitors of [3H]diazepam binding was found, either in rat or guinea-pig brain tissue. Dipyridamole, a potent adenosine transport inhibitor interacted strongly (Ki = 54 nM) with peripheral-type benzodiazepine binding sites (“acceptor sites”) and was 4–5 fold weaker in displacing [3H]methylclonazepam and [3H]Ro15-1788, ligands selective for the specific central benzodiazepine “receptor”. Unlike the benzodiazepines, dipyridamole had no anticonvulsant action against metrazole-induced convulsions in mice. Ro5-4864, a benzodiazepine which selectively interacts with the peripheral-type benzodiazepine binding site, was approximately equipotent with diazepam in inhibiting [3H]adenosine uptake in brain tissue. These results do not support the idea of a very close link between high-affinity central binding sites for clinically-active benzodiazepines and the adenosine uptake site. The possibility of a connection between benzodiazepine “acceptor” sites and the membrane nucleoside transporter is discussed.  相似文献   

13.
Summary The phosphate self-exchange flux in resealed erythrocyte ghosts and in amphotericin B (5.5 m) permeabilized erythrocytes has been studied. The phosphate self-exchange flux exhibits an S-shaped concentration dependence and a self-inhibition in permeabilized red cells while in erythrocyte ghosts no self-inhibition of the phosphate flux has been observed. The apparent halfsaturation constants and the apparent Hill coefficients were assessed by the double reciprocal Hill plots of versus 1/[P] n . The phosphate half-saturation constants amount to approx. 125mm in ghosts and to about 75mm in permeabilized cells while the apparent Hill coefficients amount to 1.15 and to 1.65 (pH 7.2, 25°C), respectively. Both chloride and sulfate elicit a mixed-type inhibition of the phosphate self-exchange flux. In permeabilized cells, chloride and sulfate shift the flux optimum towards higher phosphate concentrations and reduce the apparent Hill coefficients. In erythrocyte ghosts, the apparent Hill coefficients are insensitive to these anions. The double reciprocal Hill plots indicate a mixed-type inhibition of the phosphate self-exchange flux by DNDS, salicylate and dipyridamole and a noncompetitive inhibition of the phosphate self-exchange flux by phlorhizin. By contrast, the Hill-Dixon plots for chloride and sulfate indicate a competitive inhibition of the phosphate self-exchange flux in erythrocyte ghosts and a mixed-type inhibition in permeabilized cells and provide Hill coefficients of greater than unity for chloride and sulfate. The Dixon plots for DNDS, salicylate, phlorhizin and dipyridamole show a noncompetitive inhibition of the phosphate flux and provide apparent Hill coefficients of 0.95–1.0 for inhibitor binding. Using the Debye-Hückel theory, the effects of ionic strength upon phosphate transport and inhibitor binding can be eliminated. The results of our studies provide strong evidence for the assumption that electrostatic forces are involved in phosphate transport and in inhibitor binding.  相似文献   

14.
A number of benzodiazepines were tested for their ability to inhibit the site-specific binding of nitrobenzylthioinosine to the nucleoside transport system in human erythrocytes. Dipyridamole, a recognized inhibitor of nucleoside transport, inhibited binding in a competitive manner. Benzodiazepines also inhibited nitrobenzylthioinosine binding competitively, but were considerably less potent in that respect than dipyridamole. The low affinities of the benzodiazepines for the erythrocyte transport system suggest that significant inhibition of nucleoside transport may not occur at anxiolytic concentrations. However, at higher concentrations, some benzodiazepines would appear to have the potential to inhibit adenosine transport via interaction with the transport-inhibitory site.  相似文献   

15.
Niflumic acid is a noncompetitive inhibitor of chloride exchange, which binds to a site different from the transport or modifier sites. When the internal Cl- concentration is raised, at constant extracellular Cl- , the inhibitory potency of niflumic acid increases. This effect cannot be attributed to changes in membrane potential, but rather it suggests that niflumic acid binds to the anion exchange protein band 3 only when the transport site faces outward. When the chloride gradient is reversed, with Clo greater than Cli , the inhibitory potency of niflumic acid decreases greatly, which indicates that the affinity of niflumic acid for band 3 with the transport site facing inward is almost 50 times less than when the transport site faces outward. Experiments in which Cli = Clo show no significant change in the inhibition by niflumic acid when Cl- is lowered from 150 to 10 mM. These data suggest that the intrinsic dissociation constants for Cl- at the two sides of the membrane are nearly equal. Thus, the chloride- loaded transport sites have an asymmetric orientation like that of the unloaded transport sites, with approximately 15 times more sites facing the inside than the outside. The asymmetry reflects an approximately 1.5 kcal/mol free energy difference between the inward-facing and outward-facing chloride-loaded forms of band 3. High concentrations of chloride (with Cli = Clo), which partially saturate the modifier site, have no effect on niflumic acid inhibition, which indicates that chloride binds equally well to the modifier site regardless of the orientation of the transport site.  相似文献   

16.
Binding of the potent nucleoside transport inhibitor [3H]nitrobenzylthioinosine to rat and guinea pig lung membranes was investigated. Reversible high-affinity binding was found in both species (apparent KD approximately 0.3nM). Binding was inhibited by nitrobenzylthioguanosine, adenosine and uridine. Dipyridamole was also an effective inhibitor of [3H]nitrobenzylthioinosine binding to guinea pig membranes. In contrast, rat membranes were relatively insensitive to dipyridamole. Exposure of site-bound [3H]nitrobenzylthioinosine to high intensity U.V. light resulted in the photoaffinity labelling of lung proteins with apparent molecular weights similar to that of the human erythrocyte nucleoside transporter (45,000-65,000).  相似文献   

17.
We have utilized a highly sensitive radiationless energy transfer (RET) assay to investigate the effect of anions on the activity of carboxypeptidase A (CPD-A). The RET kinetic method visualizes the ES complex directly and thus enables both the mode of action of anions and the quantitation of their effect to be determined at a single substrate concentration. In marked contrast to the activating effect of anions on the closely related metalloprotease, angiotensin converting enzyme, Cl-, and other anions inhibit CPD-A catalysis. NaCl inhibits the hydrolysis of Dns-Ala-Ala-Phe throughout the pH range 6-10. Other di- and tripeptides are similarly inhibited while their ester analogues are affected only slightly. Changes in the type of cation [e.g., Na+, Li+, K+, Ca2+, and (CH3)4N+] at a constant [Cl-1] of 0.1 M showed no difference in the extent of inhibition, whereas with anion substitution the differences were marked. In all cases, the inhibition was partially competitive. At pH 5.9, the Ki values for the free enzyme are 51 (Cl-), 17 (N3-), 2.1 (SO4(2-)), and 0.21 mM (H2PO4-), and for the ES complex, the KI' values are 1000, 720, 42, and 13 mM, respectively. The other anions were shown to act at the chloride site. The results indicate that investigations of anion inhibition in 1 M NaCl, a typical assay condition, may be greatly hindered by the presence of Cl-. Thus, the competitive binding mode of phenylacetate toward peptide hydrolysis is greatly decreased by the presence of 1 M Cl- ion while its noncompetitive component is unaffected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4′-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25°C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 ± 0.11) × 10-10 moles · min-1 · cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 ± 14 mM and for the modifier site KS' = 653 ± 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25°C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n ? 1), indicating a single site of inhibition for the two probes. The kinetics of sul- fate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate trans- port site was the target for the action of the inhibitors. The in- hibitory constants (Ki j for the transport sites were 0.45 ± 0.10 PM for DNDS and 0.21 ± 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus oper- andi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion trans- port sites are also the sites of inhibition and of labeling of co- valent binding analogs of BS and DS.  相似文献   

19.
Effect of inorganic anions on p-amino[3H]hippurate transport in renal basolateral membranes has been studied using the vesicles preloaded with unlabeled p-aminohippurate (countertransport condition). The uptake of p-amino[3H]hippurate was stimulated by the outward gradient of unlabeled p-aminohippurate and the labeled substrate was accumulated into the vesicles against its concentration gradient in the presence of Cl-. The substitution of SCN- and SO4(2-) for Cl- in both sides of the vesicles depressed the initial rate and the overshoot magnitude of p-amino[3H]hippurate uptake. These results suggest that Cl- may play an important role for the carrier-mediated transport system of organic anion in renal basolateral membranes.  相似文献   

20.
Bumetanide-sensitive (BS) unidirectional fluxes of (36)Cl- or (22)Na+ were measured in internally dialyzed squid giant axons while varying the intra- or extracellular concentrations of Na+ and/or Cl-. Raising either [Cl-]i or [Na+]i resulted in a concentration-dependent reduction of the BS influx of both (36)Cl- and (22)Na+. Raising [Cl-]i above 200 mM completely blocked BS influxes. However, raising [Na+]i to 290 mM resulted in saturable but incomplete inhibition of both BS Na+ influx and BS Cl- influx. The consequences of varying intracellular Cl- on cotransporter effluxes were complex. At lower [Cl-]i values (below 100 mM) intracellular Cl- activated cotransporter effluxes. Surprisingly, however, raising [Cl-]i levels > 125 mM resulted in a [Cl-]i-dependent inhibition of BS effluxes of both Na+ and Cl-. On the other hand, raising [Na+]i resulted only in the activation of the BS Na+ efflux; intracellular Na+ did not inhibit BS efflux even at 290 mM. The inhibitory effects of intracellular Na+ on cotransporter-mediated influxes, and lack of inhibitory effects on BS effluxes, are consistent with the trans-side inhibition expected for an ordered binding/release model of cotransporter operation. However, the inhibitory effects of intracellular Cl- on both influxes and effluxes are not explained by such a model. These data suggest that Cl may interact with an intracellular site (or sites), which does not mediate Cl transport, but does modulate the transport activity of the Na+, K+, Cl- cotransporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号