首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Miyake  K Kataoka  M Shirai    Y Asada 《Journal of bacteriology》1997,179(16):5009-5013
Poly-beta-hydroxybutyrate (PHB) synthesis in a cyanobacterium, Synechococcus sp. strain MA19, is controlled at the enzyme level and is dependent on the C/N balance in the culture medium. The control involves at least two enzymes. The first enzyme is PHB synthase. Little PHB synthase activity was detected in crude extracts from cells grown under nitrogen-sufficient conditions (MA19(+N)). The activity was detected exclusively in membrane fractions from nitrogen-deprived cells (MA19(-N)) under light but not dark conditions. The shift in the enzyme activity was insensitive to chloramphenicol, which suggests posttranslational activation. Acetyl phosphate activated PHB synthase in membrane fractions from MA19(+N). In vitro, the activation level of PHB synthase changed, depending on the concentration of acetyl phosphate. The second enzyme was phosphotransacetylase (EC 2.3.1.8), which catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate. The activity was detected in crude extracts from MA19(-N) but not in those from MA19(+N). The results suggested that intracellular acetyl phosphate concentration could be controlled, depending on C/N balance and intracellular acetyl-CoA concentration. Acetyl phosphate probably acts as a signal of C/N balance affecting PHB metabolism in MA19.  相似文献   

2.
3.
A rapid procedure is described for assaying chloramphenicol acetyltransferase (CAT, EC 2.3.1.28) enzyme activity in intact animals following transfection of the RSV CAT plasmid into mouse bone marrow cells by electroporation. The reconstituted mice were injected with [14C]chloramphenicol and ethyl acetate extracts of 24-h urine samples were analyzed by TLC autoradiography for the excretion of 14C-labeled metabolites. CAT expression in vivo can be detected by the presence of acetylated 14C-labeled metabolites in the urine within 1 week after bone marrow transplantation and, under the conditions described, these metabolites can be detected for at least 3 months. CAT expression in intact mice as monitored by the urine assay correlates with the CAT expression in the hematopoietic tissues assayed in vitro. This method offers a quick mode of screening for introduced CAT gene expression in vivo without sacrificing the mice.  相似文献   

4.
We describe a simple, flexible, rapid, sensitive and accurate in vivo assay of the bacterial chloramphenicol acetyltransferase (CAT) enzyme expressed in mammalian cells. The assay is based on the ability of the substrate and products of this enzyme reaction (viz. chloramphenicol and its acetylated derivatives) to equilibrate rapidly between the cells and the surrounding tissue culture medium. We find that chloramphenicol added to the culture medium readily enters the cells and becomes acetylated by the intracellular CAT enzyme. The acetyl derivatives leave the cell and appear rapidly in the culture medium. Due to the large excess of the extracellular compared to the intracellular fluid and due to rapid equilibration of chloramphenicol and its derivatives between them, we find that the bulk of the chloramphenicol and its acetyl derivatives are present in the culture medium at any given time point. Chloramphenicol and its acetylated products are extracted from the medium with ethyl acetate and resolved by thin layer chromatography giving an accurate measurement of the intracellular CAT activity. Sensitive and accurate quantitation of CAT activity in this assay is made possible by the addition of trace amounts of 14C-labeled chloramphenicol to the medium.  相似文献   

5.
Amino acids produced from protein degradation are the major energy source for differentiation and aging in Dictyostelium discoideum. Considering the reactions involved in the conversion of amino acids from an average protein into tricarboxylic acid cycle intermediates, a route from a cycle intermediate (probably malate) to acetyl coenzyme A is required for the complete utilization of amino acids. Citrate was isolated from cells pulse-labeled with (14)C-labeled amino acids and was cleaved with citrate lyase. When cells were pulse-labeled with [U-(14)C]-glutamate the specific radioactivity of the acetate and oxaloacetate portions of citrate were consistent with the conclusion that one-third of the carbon flowing through the tricarboxylic acid cycle is removed for the synthesis of acetyl coenzyme A. The data were also consistent with the patterns of carbon flux required to maintain steady-state levels of cycle intermediates in cells catabolizing amino acids. It is suggested that the malic enzyme (EC 1.1.1.40) catalyzes the synthesis of acetyl coenzyme A from malate and is responsible for the observed citrate labeling pattern. In cell extracts the activity of this enzyme increased markedly with the onset of differentiation. The properties of partially purified (40-fold) malic enzyme isolated at culmination indicated that the enzyme was allosteric and was positively affected by aspartate and glutamate. Thus, amino acid production from protein degradation would stimulate a reaction essential for the efficient utilization of these amino acids for energy.  相似文献   

6.
7.
C Kleanthous  P M Cullis  W V Shaw 《Biochemistry》1985,24(20):5307-5313
Bacterial resistance to the antibiotic chloramphenicol is normally mediated by chloramphenicol acetyltransferase (CAT), which utilizes acetyl coenzyme A as the acyl donor in the inactivation reaction. 3-(Bromoacetyl)chloramphenicol, an analogue of the acetylated product of the forward reaction catalyzed by CAT, was synthesized as a probe for accessible and reactive nucleophilic groups within the active site. Extremely potent covalent inhibition was observed. Affinity labeling was demonstrated by the protection afforded by chloramphenicol at concentrations approaching Km for the substrate. Inactivation was stoichiometric, 1 mol of the inhibitor covalently bound per mole of enzyme monomer, with complete loss of both the acetylation and hydrolytic activities associated with CAT. N3-(Carboxymethyl)histidine was identified as the only alkylated amino acid, implicating the presence of a unique tautomeric form of a reactive imidazole group at the catalytic center. The proteolytic digestion of CAT modified with 3-(bromo[14C]-acetyl)chloramphenicol yielded three labeled peptide fractions separable by reverse-phase high-pressure liquid chromatography. Each peptide fraction was sequenced by fast atom bombardment mass spectrometry; the labeled peptide in each case was found to span the highly conserved region in the primary structure of CAT, which had been tentatively assigned as the active site. The rapid, stoichiometric, and specific alkylation of His-189, taken together with the high degree of conservation of the adjacent amino acid residues, strongly suggests a central role for His-189 in the catalytic mechanism of CAT.  相似文献   

8.
A simple, rapid, sensitive, quantitative, and inexpensive assay for chloramphenicol acetyltransferase (CAT) is described. The assay is based on the direct extraction of the products of the reaction into toluene-based liquid scintillation cocktail. The assay is carried out in 7-ml scintillation vials using 1 mM chloramphenicol and either 100 microM acetyl-CoA and 0.1 microCi of [3H]acetyl-CoA or 1 mM acetyl-CoA and 0.5 microCi of [3H]acetyl-CoA. After incubation, the reaction is terminated with 0.5 ml of 0.1 M sodium borate-5 M NaC, pH 9. The acetylchloramphenicols are extracted with 5 ml of 0.4% 2,5-diphenyloxazole-0.005% 1,4-bis(5-phenyloxazol-2-yl)benzene in toluene by a 30-s shaking. After a short centrifugation to clarify the layers, the vials are counted in a liquid scintillation counter. Extracted products are stable in the organic layer. Under these conditions, nearly 100% extraction of acetylchloramphenicols is shown using nonlabeled compounds and spectrophotometric methods. Using pure enzyme in the assay, linearity of activity with enzyme concentration, time, and temperature of incubation is demonstrated. Assays may even be carried out at 60 degrees C, where the enzyme activity is 3.4-fold higher than that at 23 degrees C. The increase in enzyme activity with increasing temperature is due to the increased formation of predominantly 3-acetyl and 1-acetylchloramphenicols and not to 1,3-diacetylchloramphenicol. The present assay compared very well with the standard assay using [14C]chloramphenicol and TLC. Using this assay, we measured quantitatively the CAT activity in extracts of pSV2-CAT-transfected CV-1 cells in 10 min and NIH 3T3 cell extracts in 60 min at 60 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
M Brandeis  T Hunt 《The EMBO journal》1996,15(19):5280-5289
We have studied how the cell cycle-specific oscillations of mitotic B-type cyclins are generated in mouse fibroblasts. A reporter enzyme comprising the N-terminus of a B-type cyclin fused to bacterial chloramphenicol acetyl transferase (CAT) was degraded at the end of mitosis like endogenous cyclins. Point mutations in the destruction box of this construct completely abolished its mitotic instability. When the destructible reporter was driven by the cyclin B2 promoter, CAT activity mimicked the oscillations in the level of the endogenous cyclin B2. These oscillations were largely conserved when the reporter was transcribed constitutively from the SV40 promoter. Pulse-chase experiments or addition of the proteasome inhibitors lactacystin and ALLN showed that cyclin synthesis continued after the end of mitosis. The destruction box-specific degradation of cyclins normally ceases at the onset of S phase, and is active in fibroblasts arrested in G0 and in differentiated C2 myoblasts. We were able to reproduce this proteolysis in vitro in extracts of synchronized cells. Extracts of G1 cells degraded cyclin B1 whereas p27Kip1 was stable, in contrast, cyclin B1 remained stable and p27Kip1 was degraded in extracts of S phase cells.  相似文献   

10.
《Plant science》1987,50(1):65-68
Upon discovery that Brassica campestris leaf extracts harbour some chloramphenicol acetyl transferase (CAT) activity, a systematic screening of plant tissue for this activity, so far only reported for prokaryotic microorganism, has been conducted. Results were negative for three solanaceous plants as well as for the Cruciferae Arabidopsis thaliana and Orychophragmus violaceus. By contrast, the three tested species of the Cruciferae genus Brassica exhibit significant CAT activity. The Brassica CAT activity is much more heat labile than the enzyme encoded by the bacterial transposon, Tn9, that is commonly used as a reporter in gene fusion experiments.  相似文献   

11.
A wild-type strain and six methionine auxotrophs of Saccharomyces cerevisiae were cultured in a synthetic medium supplemented with 0.1 mM L-cysteine or L-methionine and analyzed for the synthesis of homoserine O-acetyltransferase (EC 2.3.1.31). Among them, four mutant strains exhibited enzyme activity in cell extracts. Methionine added to the synthetic medium at concentrations higher than 0.1 mM repressed enzyme synthesis in two of these strains. The enzyme was partially purified (3,500-fold) from an extract of a mutant strain through ammonium sulfate fractionation and chromatography on columns of DEAE-cellulose, Phenyl-Sepharose C1-4B, and Sephadex G-150. The enzyme exhibited optimal pH at 7.5 for activity and at 7.8 for stability. The reaction product was ascertained to be O-acetyl-L-homoserine by confirming that it produced L-homocysteine in an O-acetyl-L-homoserine sulfhydrylase reaction. The Km for L-homoserine was 1.0 mM, and for acetyl coenzyme A it was 0.027 mM. The molecular weight of the enzyme was estimated to be approximately 104,000 by Sephadex G-150 column chromatography and 101,000 by sucrose density gradient centrifugation. The isoelectric point was at pH 4.0. Of the hydroxy amino acids examined, the enzyme showed reactivity only to L-homoserine. Succinyl coenzyme A was not an acyl donor. In the absence of L-homoserine, acetyl coenzyme A was deacylated by the enzyme, with a Km of 0.012 mM. S-Adenosylmethionine and S-adenosylhomocysteine slightly inhibited the enzyme, but methionine had no effect.  相似文献   

12.
Previously it was shown that transient chloramphenicol acetyltransferase (CAT) marker gene expression in Arabidopsis thaliana and Nicotiana tabacum resulted in significant differences in the accumulation of the CAT reaction products in radioactive CAT assays. Compared to Nicotiana tabacum, conversion of chloramphenicol to the acetylated products in Arabidopsis thaliana extracts was rather low. Here we report that the low CAT enzyme activity can be attributed in part to a heat sensitive CAT inhibitory effect in extracts of Arabidopsis thaliana. CAT enzyme activity in transgenic tobacco is inhibited by extracts from Arabidopsis. This inhibitory effect diminishes when Arabidopsis extracts were heat incubated. CAT activity in transgenic Arabidopsis lines was very low and was only detected in heat incubated extracts. Alternatively, enzyme-linked immunosorbent assays (ELISAs) can be used to detect the CAT protein in transgenic Arabidopsis.Abbreviations CAT chloramphenicol acetyltransferase - CAM chloramphenicol - ELISA enzyme linked immunosorbent assay  相似文献   

13.
Transfection of several cell lines (HeLa, COS, PC-12, CA-77, and H4IIE C3) with pRSV-CAT by a variety of methods yielded rather low chloramphenicol acetyltransferase (CAT) activity in cell extracts. Extracts of these cells were found to interfere with the assay of added CAT. The extracts were capable of deacetylating acetylchloramphenicol and of accelerating the rate of hydrolysis of the acetyl-CoA present in the assay. Heating the cell extract to 60°C for 10 min completely prevented the interference and slowed the hydrolysis of acetyl-CoA. Substantially higher CAT activities were observed when the extract was heat treated in the presence of EDTA prior to enzyme assay for most cell lines tested. This simple reliable method makes possible the accurate assessment of CAT activities in different cell lines. These observations are particularly pertinent to investigators studying tissue-specific gene expression.  相似文献   

14.
We have constructed a transient expression vector containing 400 bp of rat albumin gene immediate 5'-flanking sequences inserted 5' to the bacterial enzyme chloramphenicol acetyl transferase (CAT). We have transfected various clones of rat hepatoma cells representing different states of expression of the liver phenotype with this vector (pALB-cat) and also with two control vectors containing viral promoters (pSVE-cat and pRSV-cat), and measured activity of the bacterial enzyme CAT in cellular extracts 48 h later. The albumin flanking sequences are able to direct highly efficient CAT expression, compared with the control vectors, only in cells which express their own albumin gene: the albumin-negative hepatoma cells are at least 100 times less efficient in expressing CAT after transfection with the pALB-cat plasmid than are the albumin-positive ones. An unexpected result of our study is the total inability of the rat albumin flanking sequences to direct expression in albumin-producing mouse hepatoma cells.  相似文献   

15.
16.
A monoclonal antibody to chloramphenicol acetyl transferase (CAT) was used in an indirect competitive enzyme immunoassay (ELISA) for the quantitation of CAT in leaf extracts of eighteen transgenic tobacco plants containing the CAT gene fused to the cauliflower mosaic virus 35S promoter. The ELISA could be used to quantify CAT when present in extracts at 20 ng/ml. Enzymatic activity and electrophoretic mobility of CAT in these extracts was not different from CAT from Escherichia coli. Concentrations of CAT in these transgenic plants ranged from 79 to 732 ng CAT/mg protein. The average coefficient of variation among three replicate samples was 15%. All plants were sampled on two separate occasions. The CAT concentrations often varied between the two sampling dates. We determined the CAT gene copy number and the number of independently segregating loci in each plant by Southern blot analysis and progeny testing. We found no significant differences in CAT expression among all ten plants with a single CAT gene. We also found a significant correlation between CAT gene copy number and the level of CAT expressed in each plant, although plants with one gene copy sometimes had more CAT than plants with more than one gene copy. In this population, therefore, gene copy number contributed more to the variation in CAT expression than did position effects.  相似文献   

17.
A new method for reconstituting acyl coenzyme A: cholesterol acyltransferase (ACAT) activity from either Chinese hamster ovary (CHO) or human fibroblast cell extracts into cholesterol-phosphatidylcholine liposomes is described. The method is rapid (less than 60 min) and easy to perform. The procedure involves solubilizing the cell extracts with deoxycholate followed by dilution into preformed liposomes. Ficoll gradient analysis demonstrated that, after reconstitution, almost all of the detectable ACAT activity co-migrated with the liposomes. Exogenous cholesterol in the liposomes was absolutely necessary for providing ACAT activity, but not for incorporation of the ACAT enzyme into the vesicle bilayer. Human fibroblast cell extracts prepared from cells grown in medium containing 10% fetal calf serum were found to contain a 10-fold higher microsomal ACAT activity compared to extracts from cells grown in 10% delipidated fetal calf serum. In contrast, when the ACAT activity from these extracts was measured using the reconstitution assay, there was no difference in the specific activities. These results support our previous work (Doolittle, G. M., and T. Y. Chang. 1982. Biochim. Biophys. Acta. 713: 529-537; and Chang, C. C. Y., et al. 1986. Biochemistry. 25: 1693-1699), and suggest that cholesterol regulates ACAT activity in CHO cells and human fibroblasts by mechanism(s) other than modulation of the amount of enzyme.  相似文献   

18.
The binary complex of diacetylchloramphenicol and chloramphenicol acetyltransferase (CAT) has been studied by a combination of isotope-edited 1H NMR spectroscopy and site-directed mutagenesis. One-dimensional HMQC spectra of the complex between 1,3-[2-13C]diacetylchloramphenicol and the type III natural variant of CAT revealed the two methyl 1H signals arising from each 13C-labeled carbon atom in the acetyl groups of the bound ligand. Slow hydrolysis of the 3-acetyl group by the enzyme precluded further analysis of this binary complex. It was possible to slow down the rate of hydrolysis by use of the catalytically defective S148A mutant of CATIII (Lewendon et al., 1990); in the complex of diacetylchloramphenicol with S148A CATIII, the chemical shifts of the acetyl groups of the bound ligand were the same as in the wild-type complex. The acetyl signals were individually assigned by repeating the experiment using 1-[2-13C],3-[2-12C]diacetylchloramphenicol, where only one signal from the bound ligand was observed. A two-dimensional 1H, 1H NOESY experiment, with 13C(omega 2) half-filter, on the 1,3-[2-13C]diacetylchloramphenicol/S148A CATIII complex showed a number of intermolecular NOEs from each methyl group in the ligand to residues in the chloramphenicol binding site. The 3-acetyl group showed strong NOEs to two aromatic signals which were selected for assignment. The possibility that the NOEs originated from the aromatic protons of diacetylchloramphenicol itself was eliminated by assignment of the signals from enzyme-bound diacetylchloramphenicol and chloramphenicol using perdeuterated CATIII. Examination of the X-ray crystal structure of the chloramphenicol/CATIII binary complex indicated four plausible candidate aromatic residues: Y25, F33, F103, and F158.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
J Lu  C Jiang 《BioTechniques》1992,12(5):643-644
Potent inhibition of chloramphenicol acetyl transferase (CAT) by Triton X-100 and Nonidet P-40 was observed. The CAT activity was also moderately inhibited by sodium deoxycholate and sodium dodecyl sulfate, and least by Tween 20. Detergents should, therefore, not be used for cell lysate preparation when CAT activity is used as the reporter in a transient expression experiment.  相似文献   

20.
A microtransfection method, using either the DEAE-dextran or the Ca.phosphate procedure has been developed. A plasmid expressing the luciferase-encoding gene under the control of the human immunodeficiency virus (HIV) LTR promoter was constructed. Transfections were performed in 96-well plates, allowing statistical evaluation of the results. This microtransfection method requires the use of 100- to 1000-fold less plasmid and cells than in a conventional chloramphenicol acetyl transferase (CAT) assay. A Luciferase index which takes into account cell viability after transfection has been defined using a semi-automated absorbance assay. A 20-h incubation period post-transfection is sufficient for optimal results. Basal long terminal repeat activity and autologous Tat transactivation were studied in various lymphoid, monocytic and adherent human cell lines. Infection of microtransfected cells by HIV activated luc expression. This assay can thus also be used for rapid detection and quantitation of HIV. Antiviral activities of drugs can be assessed in a two-day test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号